

VOLKER HESSEL THE CHEMICAL ENGINEERING CHALLENGES OF MINING ASTEROIDS AUSIMM, ADELAIDE, 15.08.19 volker.hessel@adelaide.edu.au

CONTENTS

- Need of interdisciplinarity and technology disruption
- Historic learning: need for supply chains and hubs (business case)
- Micro-flow and space = Space-labs
- Asteroid mine atlas
- Continuous-flow extraction: coiled flow inverter for Co/Ni
- Disruptive opportunities for asteroid mining economics: high-c, high-T, ILs
- **Space-mimicked microfluidics**
- Holistic picture orbital economics & deep space communication

Hung, Telecommunication

Mahdieh, IL extraction Nam.

Volker, Chem-Life cycle manag. Eng disruption

Wendy & Marko,

Results fishing

THEMES – PROACTIVE THINK-TANKS

DISRUPTIVE TECHNOLOGY & INDUSTRIAL TRANS-FORMATION OF THE AMERICS AFTER 1492

Export through top sales product: 21 million beaver hats (1700-1770)

=> Export 1750: Germany: 16,500, Spain: 110,000, Portugal: 175,000

Invention: Modularisation

Eli Whitney, 1801

Interchangeable parts

Transformed America from an artisan-based nation to an assembly line style producer

- New England was more far and unknown
 400 years than asteroids today
- Supply chains and hubs
- New, unknown resources (eg tobacco & beaver hat): disruptive technologies
- (Semi-) finished goods & innovation
- Transformative business window: innovations

CONTINUOUS BECOMES NEW STANDARD

FDA calls on manufacturers to begin switch from batch to continuous production

D. J. C. Constable, C. Jimenez-Gonzalez, R. K. Henderson, *Org. Process Res. Dev.* **11** (2007) 133-137

... ALSO IN SPACE ... NEW STANDARD

SpaceTango (with Zaiput) Flow Chemistry in Spaaaaaaaaace! CSIRO

Flow Chemistry in Space–A Unique Opportunity to Perform Extraterrestrial Research

J. Flow Chem. 2017, 7(3–4), 151; Nat. Rev. Chem. 2017, 1, 0055

DECEMBER 1, 2015

Getting into the flow on the International Space Station

by Mike Giannone, NASA

www.spaceflow.org American Chemical Society

PHARMA GOES SPACE

Pharma giants Merck, Procter & Gamble, Amgen and Eli Lilly are on International Space Station

SpacePharma and Space Tango offer 'space pharma laboratories'

More rodents left the Earth's orbit than any other mammal

LENGTH AND TIME: 'MULTI-SCALES'

V. Hessel, D. Kralisch, N. Kockmann Novel Process Windows, Wiley-VCH, Weinheim, 2014

DISUPTIVE ENGINEERING ON EARTH ... & IN SPACE

- Process intensification = processing at first principles
- **Novel Process Windows = Novel Business Windows**
- Lower costs and better environmental footprint
 - Automation = opportunity for artificial intelligence
- Modularisation = LEGO for space challenges
- **Compactness / Light-weight = low payload**
- Zero gravity processing feasible = capillary forces dominate
- Vacuum processing feasible = enclosed process chamber; no headspace

S

NOVEL PROCESS WINDOWS – HIGH-p,T: SUPERHEATED PROCESSING

Microreactors expand the p, T process window and more (e.g., concerning c). Microwave did similar, but is difficult to scale-up

NOVEL PROCESS WINDOWS

V. Hessel, N. Kockmann, D. Kralisch, T. Noel, Q. Wang, *ChemSusChem* **65** (2013) 746-789

T. Razzaq, C. O. Kappe, *Chem. Asian J.* **5**, 6, 1274-128

SPACE MINI-LABS

CubeLabs[™]

Standardized platform

Open architecture

Multiple biomedical applications to run simultaneously and independently

DIDO-2

10x10x30 cm 4.5 kg Medical experiments

SOLVENT EXTRACTION IN MINING INDUSTRY

GLENCORE'S MUTANDA MINE - Largest Cobalt Reserve on Earth

HOT TOPICS LATEST TOP STOCKS SECTORS IPOS TOOLS

Glencore's Mutanda mine shutdown could prompt earlier than expected cobalt price revival

By Lorna Nicholas - August 14, 2019

PLANET VS ASTEROID MINING

MOON # ASTEROID

NEAR CIRCULAR EARTH ORBIT Average Distance 240K Miles

FEASIBLE GRAVITY WELL One-Sixth Earth's Gravity

VALUABLE NATURAL RESOURCES Helium-3, Water, Silicon, Rare Metals

> DEEP SPACE MISSION STAGING Fuel, Supplies, Gear, Training

> > H2O EXTRACTABLE AT POLES Propellant, Potable Water, Air

VERY ACCESSIBLE ORBITS Intermittent Near-Earth Passes

> LESS FUEL & LOWER THRUST For Return to Earth Orbit

RICH RANGE OF RESOURCES Water, Methane, Rare Metals

PERPETUAL SUNLIGHT Continuous Solar Electric Power

H2O READILY EXTRACTABLE Minimal Gravity, Less Cohesion

GEOLOGICAL PROCESSES ASTEROID vs EARTH

Metal abundance on Earth

Space planets & asteroids material distribution

Relations Between Important Planetary Materials

Solar Composition Carbonaceous Chondrite 100 Mar 1 Solids Condense ose Hydrogen, Helium Ordinary Chondrite Low Heat Lose Carbon, Water Achondrites, Stony-Irons, Irons **High Heat** Materials Melt, Separate Granites Form **Continued Heat** Remelting or Segregatio Basalt Iron yroxene Granite

ASTEROIDS AND THEIR VALUE MATERIALS

Table 1. Metal contents and distributions in the diverse types of most valuable asteroids

Name	Ту pe	Discovere d vear	Composition	MOID (AU)	Value (\$)	∆v (km/s)	
Ryugu	Cg	1999	Ni, Fe, Co, H ₂ O, N ₂ , H ₂ ,	0.000638	82.76 billion	4.663	Asterank
1989 ML	Х	1989	Ni, Fe, Co	0.082029	13.94 billion	4.889	scientific and
Nereus	Xe	1982	Ni, Fe, Co	0.003153	4.71 billion	4.987	
Bennu	В	1999	Fe, H_2, NH_3, N_2	0.003223	669.96 million	5.096	database of over 600'000
Didymos	Xk	1996	Ni, Fe, Co	0.039777	62.25 billion	5.162	asternids
2011 UW158	Xc	2011	Ni, Fe, Co, Pt	0.002914	6.69 billion	5.189	usteroius
Anteros	L	1943	MgSiO ₃ , Al, Fe, Fe ₂ O ₄ Si	0.062212	5.57 trillion	5.44	
2001 CC21	L	2001	MgSiO ₃ , Al, Fe ₂ O ₄ Si	0.083067	147.04 billion	5.636	
1992 TC	Х	1992	Ni, Fe, Co	0.167212	84.01 billion	5.648	
2001 SG10	Х	2001	Ni, Fe, Co	0.017183	3.05 billion	5.88	
2002 DO3	Х	2002	Ni, Fe, Co	0.029415	334.44 million	5.896	
2000 CE59	L	2000	MgSiO ₃ , Al, Fe ₂ O ₄ Si	0.008298	10.65 billion	6.015	
1995 BC2	Х	1995	Ni, Fe, Co	0.135685	78.87 billion	6.01	
1991 DB	С	1991	Ni, Fe, Co, H ₂ O, N ₂ , H ₂ , NH ₃	0.102803	168.20 billion	6.146	
2000 RW37	С	2000	Ni, Fe, Co, H ₂ O, N ₂ , H ₂ , NH ₃	0.008221	29.27 billion	6.225	
1998 UT18	С	1998	Ni, Fe, Co, H ₂ O, N ₂ , H ₂ , NH ₃	0.037188	644.70 billion	6.221	
Seleucus	Κ	1982	Ni, Fe, Co, H ₂ O, N ₂ , H ₂ ,	0.102357	33.52 trillion	6.289	

WATER FOR ASTEROID MINING: NEED FOR DIS-RUPTIVE TECHNOLOGIES TO GIVE ECONOMIC CASE

□ South Australia's cobalt ~2900 t/a in Mount Gunson Copper Mine

Largest mine on Earth: Glencore's Mutanda, Republic of Congo, 23,900 t cobalt in 2017

□ 190 tons of water per ton of cobalt (190 : 1)

□ 1 ton water from Earth to LEO: 3 million \$ + 80 kdollar per t cobalt on Earth

Ryugu (1999 JU₃): 4.5 x 10⁶ t cobalt

□ 80 kdollar per t cobalt, Earth <-> 300k per t water, Space 2025

METAL CONCENTRATION 10 mol/l (space) vs. 0.1 mol/l (Earth);

RELATIVE METAL LOAD i.e. Ni:Co = 10:1 in space vs. Ni:Co = 3:1 on Earth;

METAL MIXTURE COMPLEXITY i.e. Fe, Ni, Co, Pt, ... ;

ALLOYS i.e. Kamacite in space, α-(Fe, Ni); Fe0+0.9Ni0.1

SEGMENTED FLOW IN A COILED FLOW INVERTER

Lab-Scale: Coiled-Flow Inverter (8 l/h)

Production-Scale: Coiled-Flow Inverter (1700 l/h)

COBALT VS NICKEL ENRICHMENT BY CONTINUOUS-FLOW

Volumetric mass transfer coefficient $k_{\rm L}a$ in coiled micro-flow inverter

k₁a in re-entrance flow reactor

Continuous-flow extraction 7 times more selective, and 10 times faster than batch Chance for substantial water savings and much higher productivity at small footprint

Zhang, L., Hessel, V., Peng, J., Wang, Q. & Zhang, L., 2017. Chemical Engineering Journal, 307, pp.1-18. Zhang, L., Hessel, V., Peng, J., 2018. Chemical Engineering Journal, 332, pp. 131-139.

DISRUPTIVE FLUID PROPERTIES - mimicking 'space fluids'

Nickel nitrate <u>10 mol/l</u> 'wet liquid metal' 182 g metal salt < 100 ml water Almost 3 kg/l 4 x water viscosity Pure nickel nitrate – melting point 56 C solvent-free process?

FLOW PATTERNS OF WATER-KEROSENE WITH DIFFERENT MICRO-FLOW CONTACTORS

Y-junction

FLOW PATTERNS OF WATER-KEROSENE VS METAL LOAD AND FLOW RATE

Y-junction Y-junction **Y-junction Y-junction Y-junction** 240 mL/h; 1:1 480 mL/h; 1:1 480 mL/h; 1:1 480 mL/h; 1:1 720 mL/h; 1:1 Ni: 10 mol/l Ni: 10 mol/l all 3 cases Zero Ni,Co Ni: 0.5 mol/l Co: 0.05 mol/l Co: 1 mol/l Co: 1 mol/l (5) In no case w 5 regular flow pattern 5 **Irregular slugs** 0

IONIC LIQUIDS

Ionic liquid	Metal ion	Mechanism	Ligand/solvent	Performance (E %)	Stripping agent	reference
[HMIM][BF ₄]	Co(II)	IEª	NaCl	Co(II), D= 5.8	NaPF ₆ (0.03 M):	[34]
					Co(II),100%	
[HJMT][Cy272]/ Kerosene, Exxon	Co(II), Ni(II)	IE	HCl (1 M)	Co(II),>99%; Ni(II),11%	EDTA (0.02 M):	[35]
D100 and Solvesso 200					Co(II) ,95%; Ni(II), 83%	
[BuGBOEt][Dca]	Cu(II), Ni(II),			Pb(II), 858%;Cd(II),	EDTA (0.1 M): Ni(II),	[36]
	Pb(II), Cd(II)			95%;Ni(II), 82%;Cu(II), 83%	100%;	
					Cu(II), 100%	
[BuGBOEt][Tf ₂ N]	Cu(II), Ni(II),			Pb(II), 38%; Cd(II), 41%;	EDTA (0.1 M): Ni, 100%;	[36]
	Pb(II), Cd(II)			Ni(II), 20%; Cu(II), 22%	Cu, 100%	
[Dibutyl IM][Br]	Co(II), Ni(II)	AE ^b	Acidic thiocyanate	Co(II), >99%	NH ₃ (1.0 M): Co(II), >93%	[37]
			HNCS			
[N ₈₈₈₈][oleate]	Zn(II), Co(II)	IL metal	HCl	Co(II), D=20.4; Ni(II),		[38]
	,Ni(II)	complex		D=13.5; Zn(II) D>200		
BuNC ₂ OC ₄ -Sac,	Cu(II), Ni(II),	cation		Cu(II), 30%; Ni(II), 5%;	EDTA (0.1 M)	[39]
	Co.(II), Pb(II),	exchange and		Co.(II), 10%; Pb(II), 20%;		
	Cd(II)	IPc		Cd(II), 95%		
BuNC ₂ OC ₄ -Clsal	Cu(II), Ni(II),	cation		Cu(II), 100%; Ni(II), 96%;	EDTA (0.1 M): Ni(II),	[39]
	Co.(II), Pb(II),	exchange and		Co.(II), 94%; Pb(II), 100%;	100%; Co(II), 100%,	
	Cd(II)	IP		Cd(II), 100%	Pb(II), 100%; Cd(II), 100%	
BuNC ₂ OC ₄ -Dca	Cu(II), Ni(II),	cation		Cu(II), 98%; Ni(II) 98%;	EDTA (0.1 M) : Ni(II),	[39]
	Co.(II), Pb(II),	exchange and		Co.(II), 95%; Cd(II), 95%	100%; Co(II), 100%;	
	Cd(II)	IP			Pb(II), 100%; Cd(II), 100%	
Cyphos IL 101	Co(II), Ni(II)	AE and split-	H_2SO_4 , (NH ₄) ₂ SO ₄	Co(II),>90%	Water: Co(II)>99%	[40]
		anion				
$[P_{44414}][Cl]$	Co(II), Ni(II)	-	NaCl	Co(II), D=100; Ni(II), D=0.2	-	[41]
[A336][CA-12]	Co(II), Ni(II)	ion association	Toluene, Na ₂ SO ₄	Co(II), D>95% ; Ni(II),	$H_2SO_{4:}$ Co(II), 100%;	[41]
[A336] ₂ SO ₄				D>65%	Ni(II)>99%	
$[P_{66614}][Cl]$	Cu(II),	-	HCl (9 M)	Co.(II), >98%; Fe(III), >99%	(EDTA + Water):	[42]
	Co.(II),				Fe(II)>80%	

Ionic liquids are powerful in metal extraction: faster & more selective; can potentially be operated openly

DEAN NUMBER WATER

- Curvature & Miniaturisation

THE UNIVERSITY

ofADELAIDE

DEAN NUMBER IONIC LIQUID

Flow <u>rateQ</u> (ml/1	U(m/ nin)	/s) <i>Re</i>	Ca	We	d _i (m	um) d _c /d _i	Di	<u>k</u>
16	0.3392	371.6	0.0057	2.1381	1	10	117.52	
18	0.3816	418.08	0.0064	2.7061	1	10	132.21	WATER
20	0.424	464.53	0.0071	3.3408	1	10	146.90	0.69 mPa·s
16	0.3392	9.71	1.336	12.979	1	10	3.07	CH3 /-N+ 0.0
18	0.3816	10.93	1.503	16.426	1	10	3.46	F ₃ C-S-N-S-CF ₃
20	0.4240	12.14	1.670	20.279	1	10	3.84	сн₃ 51.0 mPa·s
16	0.3392	2.25	6.9290	15.623	1	10	0.713	
18	0.3816	2.54	7.7951	19.773	1	10	0.802	N 382 mPars
20	0.4240	2.82	8.6612	24.411	1	10	0.891	CH ₃

DEAN NUMBER & VISCOSITY NaCl (aq) - Brine

Salt solutions at extremely high concentrations (molar) will fluidically benefit from high-T through viscosity reduction

ORBITAL ECONOMICS Easily Recoverable Asteroids

 $m_f \equiv \text{final mass}$ $m_i \equiv \text{initial mass}$ $\Delta v \equiv \text{velocity increment}$ $v_{ex} \equiv \text{exhaust velocity}$

• Selected asteroid trajectories

Hohmann transfer: delta-v

Mission	Δν			
Earth surface to <u>LEO</u>	8.0 km/s			
LEO to near-Earth Asteroid	5.5 km/s ^[note 1]			
LEO to <u>lunar</u> surface	6.3 km/s			
LEO to moons of <u>Mars</u>	8.0 km/s			

ASTEROID COMMUNICATION

Communication Challenges

- **ground support for the mission,**
- □ trajectory corrections,
- remote control in case of emergencies,
- □ transmission of data for analysis

Usada Deep Space Center

Technology High and low gain antennas, Deep Space Network (DSN), X-band communication, transponder, amplifier, ...

Expenditure Typical communication module: 10 kg weight, 120 W power (10% of typical power consumption in an aircraft)

Limitations Low data rate, high latency, delay time in response, only 12 antennas in DSN

CONCLUSIONS

- THE UNIVERSITY of ADELAIDE
- Space mining is more than automation of remote processes
- Disruptive technologies are not considered in current ISRU approaches, yet are the key to economics

- □ Holistic picture needed interdisciplinary
- The economics themselves have to be developed = business case
- Need for a business case space mining trade
- Off-earth thinking for Earth?

SPACE HORROR – SPACE POLLUTION

AFCS 19

Australian Flow Chemistry Symposium

2-3 December 2019 Melbourne, Australia

International Conference of Microreaction Technology

8-11 December 2020 Melbourne, Australia

