Increase your metal recovery with real-time, AI-powered interconnected apps

'Scientific AI in Real-Time'

Carl Smith - National Account Director APAC

Proprietary & Confidential © Copyright 2024 IntelliSense.io

Connect and Optimize the Mine to Market Value Chain

Local (Process) and Global (Value Chain) Optimization

Breaking the Silos

High Granularity: Cross Discipline Decision Making

Connected Solution

Stockpile Management: From WAM to a 3D Block Model

Data Synthesis

Stockpile & Inventory Optimization Application

Stockpile Management Challenges

'Weighted Average - WAM' Models

- 1. Limited knowledge leading to **high ore variability feed to plant** affecting throughput, recovery and grade
- 2. Low accuracy in mine planning and blending strategy
- 3. Lack of connection between spatial and time series data limiting proactive upstream and downstream decision making

Stockpile & Inventory Optimisation

IntelliSense.io®

Solution

Stockpile and Inventory Optimisation Application

- Material Tracking
- Scan Management and Quality Checks
- GPS Smart Filling
- Dozer Modelling

- Stockpile Administration
- Dashboards and Reports
- Source Data Reconciliation
- Alerts Monitoring

IntelliSense.io®

Delivering Insights to Operators in Real-time

Enabling the Right Decisions at the Right Time

ROM and Production Stockpiles

- Material tracked with granular 3D block models
- Material handling & transport models

Crushed Ore Stockpiles

- Tracks flow rate and particle size distribution of the output material for single or multiple feeders.
- Monitors stockpile 'total capacity' with both 'live' and 'dead' zones, providing input into retrieval strategy.

Proprietary & Confidential © Copyright 2023 IntelliSense.io

Flotation Optimizer UI

Ű۲

ß

C

- Optimizer screen designed for Metallurgists / Operators
- Permits execution of following tasks:
 - Set Optimization strategy
 - Monitor Recommendations vs Actual Setpoints per each cell
 - Receive Alerts when the change of the setpoint is required

The Optimizer screen will be available once the Live data integration is configured

Sense.io*		() bra	INJ .app [®]					Q 🗛	Q
lotation Optim	izer Beta								
Feed SAG Mill 3	Control Reco Updated at 13:00, r ROUGHER (4)	mmendati lext update at 1 CLEANER (19	ONS 3:30 in 16 min (E SCAVENG	ST). Current valu	es updated minu	itely.		Performa Updated minute Set strategy	Ince
AUTO-UPDATED	Rougher A – Lir	ie 2						Cu Recovery (%)
Tonnage 194.0 t/h	Airflow Rate	ET-2610	ET-2521	ET. 2522	ET-2522	ET-2524	A	87.9	+1.30 89.2
Solids Density 2239.0 kg/m³		F1-2019	F1-2521	F1-2522	F1-2525	F1-2524	F1-2527	↑ Maximize Cu Concentrate	Grade (g/t)
MANUAL INPUT	L Current SP	252.4	223.3	287.8	290.7	279.4	401.0	Current 1563	Optimized
Head Grade 9.4%	— Optimized	254.5	270.0	276.3	285.3	299.5	401.2		1533
P80		m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	⊥ Minimum tar	get: 1500.00
150.0 µm	Froth Depth						~	Cu Tailings Grad	le (g/t)
P95 180.0 μm		FT-2519	FT-2521	FT-2522	FT-2525	FT-2526	FT-2527	Current 4.53	optimized +0.49 5.02
Solids Percentage 32.0%		_				-	-	Mass Pull (%)	
Report new values 🛽	E Current SP	658.4	459.3	252.4	252.4	715.0	800.0	Current	Optimized
	— Optimized	658.4	689.0	696.3	710.3	715.3	800.3	10.3	+1.56
The new values will be taken into account in the next recommendations update.		mm	mm	mm	mm	mm	mm		11.7

Real-Time AI Decision Optimisation

Predicting the Future

() IntelliSense.io[®]

Value Case Studies

Stockpile Management

IntelliSense.io®

Case Study 1: Plant Variability

Large Copper Mine

Value Delivered

Decreased plant feed variability by 5-8%

Better planning and reclaim strategy

Improved plant setup for next incoming shift

3D Digital Block Model of Stockpile exposing the dump locations and ore grade within the stockpile

3D Digital Block Model of Stockpile exposing the material deposited by age range

Problem

• High variability of the material from different stockpiles being fed to the plant made it challenging to meet planning goals

Solution

IntelliSense.io®

- 3D Block Model of the Stockpile calibrated with topographical scans
- Material Tracking refreshed in real time as changes occur

Case Study 2: Reclaim Strategy

Decreasing Variability of Plant Feed Contaminants and Improving Predictability

Value Delivered

Decreased Al2O3 variability by 20%

Improved downstream operations by reducing contamination

Problem

- Failure to meet product specification for alumina grade leading to penalties
- Heterogeneity was problematic due to the use of weighted averages in stockpiles
- High material variability & lack of predictability for plant feed led to suboptimal operation

Solution

IntelliSense.io®

• Stockpiles strategically reclaimed to homogenise plant feed using polygons based on 3D block models spatial distribution

Strategy for better reclaim and blend strategy based on 3D Stockpile models

Case Study 3: Long Term Stockpiles

Large Iron Ore Operation

Value Delivered

Improved blending decisions

Improved material property analysis

Improved NPV estimates of long term inventory

Problem

- Millions of tonnes of ore with limited granular accuracy
- Weighted Average properties only

Solution

IntelliSense.io®

• Historical site FMS and survey scan data ingested by SIO to accurately model legacy long term Iron Ore stockpiles

Case Study 4: Material Handling Issues

Dump and Load Data Missing

Value Delivered

Avoid 100k tonnes of Waste to Plant >\$4M

20k tonnes of ore recovered from misdumps

|--|

Material Movement accounting reports

Problem

- FMS label data quality issues leading to misdumps
- >100,000t of waste dumped on ore-grade stockpile during road widening construction
- >20,000t of ore was unknowingly used for building pit road platforms

Solution

() IntelliSense.io[®]

• SIO 3D block model used to recognise deviations on stockpile & alerts used to highlight dumps that were out of range

Case Study 5: FMS Data Quality

Persistent Missing Loaders GPS not Picked up by Data Engineers

Value Delivered

Improved data quality

Data quality clearly displayed in brains.app

 ${old C}$ Improved reconciliation

Problem

- 30% of FMS load locations were missing
- Site unaware of the problem for 9 months

Solution

IntelliSense.io®

- Using the Spatial Data Quality screen, errors were spotted, analysed, & addressed
- Smart GPS filling kept robust real time results until data quality issue resolved.

tal events (j) 4 720	Invalide	0	3 580	Tota	tonnes 🗊	902 000 t	Inv	alid 🛈	686 00
nart GPS filling			Null GPS (i)				Outside bound	daries 🛈	
3 580			Events				Events		
s 686 000			Tonnes	68			Tonnes		186
100%			TOTAL				TOTAL	30%	ATTENTION 23%
slabelled () 0 %		Events		76 %	17	Tonnes		0%	3 31
Reclaims									
Reclaims LG_PRIME	Stockpile	0	0	_	0	0		0	0
Reclaims LG_PRIME LG_ROM1	Stockpile	0	0	100%	0	0	100%	0	0
Reclaims LG_PRIME LG_ROM1 NORTH_DUMP	Stockpile Stockpile	0 8 0	0 1 440 0	100%	0 8 0	0 1 440 0	100%	0 8 0	0 1 440 0
Reclaims LG_PRIME LG_ROM1 NORTH_DUMP NORTH_DUMP_MV_PRIME	Stockpile Stockpile Stockpile Stockpile	0 8 0	0 1440 0 0	100%	0 8 0	0 1440 0 0	100%	0 8 0	0 1440 0 0
Reclaims	Stockpile Stockpile Stockpile Stockpile	0 8 0 0	0 1440 0 0	100%	0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1440 0 0	100%	0 8 0 0 0 0	0 1440 0 0
Reclaims	Stockpile Stockpile Stockpile Stockpile Stockpile Stockpile	0 8 0 0	0 1440 0 0 0 0	100%	0 8 0 0 0	0 1440 0 0 0	100%	0 8 0 0 0	0 1440 0 0 0
Reclaims	Stockpile Stockpile Stockpile Stockpile Stockpile Stockpile Stockpile	0 8 0 0 0 0 0 0	0 1440 0 0 0 0 0 125 000	100%	0 8 0 0 0 0 0 654	0 1440 0 0 0 0 0 0	100%	0 8 0 0 0 0 0 654	0 1440 0 0 0 0 0 125000
Reclaims	Stockpile Stockpile Stockpile Stockpile Stockpile Stockpile Stockpile Stockpile	0 8 0 0 0 0 0 654 1110	0 1440 0 0 0 0 0 0 125 000 218 000	100%	0 8 0 0 0 0 0 0 654 1090	0 1440 0 0 0 0 0 125 000 214 000	100%	0 8 0 0 0 0 0 0 654 1090	0 1440 0 0 0 0 0 125000 214000
Reclaims	Stockpile Stockpile Stockpile Stockpile Stockpile Stockpile Stockpile Stockpile	0 8 0 0 0 0 0 0 654 1110	0 1440 0 0 0 0 0 125000 218000	100% 100% 98%	0 8 0 0 0 0 0 6 5 4 1090 0	0 1440 0 0 0 0 125 000 214 000 0	100% 100% 100%	0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1440 0 0 0 0 125 000 214 000

Proprietary & Confidential © Copyright 2024 IntelliSense.io

Commodity, Equipment & Circuit Agnostic: Chile Cu Case Study

Challenge: Extremely Complex Circuit + Columnar Cells Performance

(i) IntelliSense.io®

Recap

Mining Team

Real time 3D stockpile block models tracking grade and full spectrum of material properties

Geological modelling & mine planning **software** compatible

Data quality analytics and alerts

IntelliSense.io®

Met Accounting

Centralized material tracking across the mine value chain

Material property predictability, Planned vs Actual accuracy

Out of spec material analytics and alerts

Processing Team Improve blending decisions Understand plant performance More accurately reconcile Improved compliance to plan

Proprietary & Confidential © Copyright 2023 IntelliSense.io

Rare Earth

Where Are We Doing This?

Global Footprint, Cross Commodity, Large & Complex Sites

IntelliSense.io[®]

Real-time Scientific AI APPLICATIONS

10 Years in Mining**105** Employees

200,000 Person Hours of R&D

120 Person Years of R&D

BASF Strategic Investor **23** Technology Patents

EXAMPLE OF SITES DEPLOYED Bakyrchik (Polymetal) Casa de Pedra (CSN) Collahuasi (BHP) Cortez (Nevada Gold) Cowal (Evolution) Kennecott (Rio Tinto) KCC (Glencore) Kolomela (Anglo American) Los Pelambres (AMSA) Minas Rio (Anglo American) Mogalakwena (Anglo American) Penasquito (Newmont) Quellaveco (Anglo American) QB2 (Teck) Sishen (Anglo American)

Gartner COOL VENDOR 2022 Gartner[®] Cool Vendor™ in 'Simulation for AI'

INVEST METS

'Best Scale Up' 2024 Nominated by our Customers National Technology Awards 2022 WINNER

AI Solution of the Year

"The system has exceeded expectations and is now being implemented at all operations"

–Head of Mining Global 'Tier 1' Miner

IMPACT OF REAL-TIME SCIENTIFIC AI APPLICATIONS

250 tonnes (\$2M) of additional Copper production per week

10k tonnes (\$80M) of increased Copper production per year

1.5% increase in Gold recovery from flotation scavenger circuit

16% reduction in chemical use\$1.3M (1%) increase in grinding throughput

8% saving in acid consumption

5-8% decreased feed variability to plant
3.5GWh (2480 tCO2e) reduction in energy
\$38M (1%) improvement in metal recovery

Real-Time Scientific AI - In Action

Australia - Gold Recovery Optimization Solution

Existing IntelliSense.io App at Major Gold Miner

Material Tracking & Reconciliation with Real-Time Optimization Solutions

Currently being implemented COS + Flotation + Leaching

Non Linear Value achieved with upstream and downstream Apps "talking to" and influencing each other via interconnection with Real-Time Material Tracking, Influence and Reconciliation

Thank You ! Q&A

Carl Smith

National Account Director - APAC carl.smith@intellisense.io +61 (0)435308380

Proprietary & Confidential © Copyright 2023 IntelliSense.io