Mobile processing plant to reinvigorate small capital gold mining

Paul Breuer|Gold Processing Team LeaderMetFest 2017

MINERAL RESOURCES

Outline

1. CSIRO overview

- 2. Thiosulfate as an alternative to cyanide
- 3. Mobile low capex gold processing demonstration project

Who we are

People	~5000
Sites	55
Business	Units 9
Budget	\$1B+
We develop postgraduate students wit	~ 750 e research h our

CSIRO: Australia's innovation catalyst

5000+ staff across 54 sites

Top 1% of globalresearch institutions in14 of 22 research fields

Inventors of wifi and soft contact lenses (and so much more)

2800+ industry
partners totaling
\$220M+ per year

130 active licences

Australia's largest patent holder (1862 patents)

Working with **1200+ SMEs** every year

64% of our people hold uni degrees.2000+ hold PhDs500+ hold Masters

159 Aussie companies started from CSIRO technology

World-class facilities and connections

GLOBAL PRECINCTS

NATURAL & ENVIRONMENTAL SCIENCES CANBERRA | ACT

NATIONAL RESOURCE SCIENCES PRECINCT PERTH | WA

ECOSCIENCES BRISBANE | QLD

+ HUMAN LIFE SCIENCES PARKVILLE | VIC

> MANUFACTURING & MATERIALS INNOVATION PRECINCT CLAYTON | VIC

MAJOR INFRASTRUCTURE

MARINE RESEARCH VESSEL HOBART | TAS

ASKAP RADIO TELESCOPE MURCHISON | WA

THE PAWSEY SUPERCOMPUTING CENTRE PERTH | WA

Mineral Resources

CSIRO's R&D in the minerals domain:

- Budget ~\$70m pa (~\$30m pa external sources)
- Involves about 250 scientists and engineers
- > 12 sites located in 5 states;
- Collaboration with >50 universities and other institutions, nationally and internationally;
- Engagement with >300 companies across the value chain; and
- Based on a technology vision for where the sector is going.

Mineral Resources - Our purpose...

Growing Australia's Resource base

How do we find it ? How do we process it ?

Improving productivity

Improve unit operations (brownfield) Design of new process options

Driving environmental performance

Low energy processing Reduce C footprint in metal production AMD, tailings & rehabilitation

Resources supporting society

Community attitudes and buy-in

Gold Processing Technologies

Cyanidation

- Cyanide speciation analysis and management
- Complex ores characterisation and leaching
- Carbon management
- Cyanide destruction evaluations (Caro's acid, Inco & H₂O₂)
- Cyanide recovery & recycle (SART and IX resin/carbon based processes)
- Trace element deportment (eg. mercury)

Thiosulfate based process development

- Alternative to cyanide
- New market opportunities

Micro CT scan of gold loaded activated carbon particle

Thiosulfate processes for gold recovery

Thiosulfate based leach systems

Many different thiosulfate based systems

Often classified by oxidant:

- Copper-ammonia
- Oxygen (+ copper)
- Other metal complexes
 - Metals such as copper, iron and nickel
 - Ligands such as organic amines, oxalate

Catalysts/additives

- Thallium and lead
- Thiourea
- sulfite

Thiosulfate consumption typically proportional to gold leach rate

Application developments

Barrick Goldstrike

- Calcium thiosulfate + copper
- Process development and on-site demonstration
- Commercial implementation in 2014

Gravity concentrates

- Copper-ammonia system able to achieve acceptable leach rates
- Developed to the pilot plant stage

Barrick Gold's thiosulfate demonstration plant at the Goldstrike

In-situ (the future)

- Laboratory column evaluations conducted for specific deposits / companies
- Field trials under consideration

Additional gold recovery (small gold miners)

Combined process benefits

- High and predictable overall gold recovery
- Gold recovery risk lower robust leach process captures gold not recovered by gravity
- Gravity recovery doesn't have to chase the fine gold optimise for recovery of the coarse gold

Performance of CSIRO product (thiosulfate system)

Sample	Description	Size (μm)	Head grade	NaCN leach recovery	CSIRO product leach recovery	Thiosulfate consumption
			(g t ⁻¹)			(kg t ⁻¹)
Α	Low sulfide ore	P ₉₀ - 74	0.9	90% @ 24 hrs	90% @ 24 hrs	2.2
В	Carbonaceous ore; gold partially encapsulated	P ₈₀ - 75	1.9	51% @ 24 hrs	70% @ 24 hrs	1.6
С	Aged sulfide ore gravity tails	< 2000	1.2	73% @ 24 hrs	67% @ 24 hrs	1.1
D	Oxide ore	< 10000	1.4	59% @ 24 hrs	56% @ 2 days	1.5
Ε	Oxide ore gravity tails	< 1000	2.1	80% (intensive cyanidation with LeachWell)	76% @ 7 days	< 0.2
F	Oxide ore; potential ISR candidate	< 4000	~5	38% @ 24 hrs; 81% @ 7 days	79% @ 2 days	1.3

Cyclic testing

- Batch leaching of gold RDE
- Tetrathionate added to mimic ore leaching

Leach

Recycle to next leach 1st 5BVs Au Resin elution recovery 1st column PLS 2nd 5BVs Makeup Resin adsorption Recycle to next elution Resin columns cycled after every 2 batch leaches

Cyclic testing

Gold breakthrough

• Required resin columns to be cycled faster

Cyclic testing

Resin elution

- Sharp gold elution profile
- > 99% Au recovery
- Tetrathionate converted to trithionate

Sample	Au		Thiosulfate	Trithionate	Tetrathionate	Pentathionate
	$(g t^{-1})$	Efficiency	(mM)	(mM)	(mM)	(mM)
		(%)				
Preg. resin	3186	00.01	62	142	229	111
Barren resin	6	99.81	2	101	0	0

Hurdles in adoption of new lixiviants for gold recovery

Proof at scale a process can economically recover gold

- Leaching and gold recovery R&D conducted but limited process development
- Reagents require recovery and recycle due to the concentrations used
 - More complex / undeveloped circuits
- Risks with scaling laboratory / pilot plant data

Process is practical and robust

- Low impact (economic and physical), including operability of the process and resources
- Able to cope with typical ore variability
- Applicable to a range of ores

Addressing the challenges

Research facility in the field

- End user / operator involvement to ensure the technology is practical and robust
- Pilot / demonstration information attained in conjunction with development at scale

Process development

- Vat leach with cyclone to remove fines
- Tank leach with thickener / filter as parallel circuit to treat fines
- Nano-filtration to aid reagent recovery and minimise water use
 - Evaporation will be adopted initially to maintain the water balance
- Plug and play modules allowing testing and development of alternative flowsheets

Mobile low capex gold processing demonstration at Menzies

Key Project Collaborator – Nu-Fortune Gold

Menzies stamp battery site

- Existing mill and gravity plant operating at 200 t/d
- Existing infrastructure
- Central location at Menzies
- Site leased from the Perth Mint
- No hurdles with approvals

Nu-Fortune Gold

- Shared vision and Entrepreneurs
- Experience in mineral processing

Demonstration Plant

Process

- Thiosulfate system developed with high reagent stability and moderate gold leach rate
- Low capex vat leach application
- 100 t/d demonstration plant
 - Construction underway and commissioning to commence soon
 - Operational January 2018 (seeking process technicians/metallurgists)
 - Multiple ore feeds, including gravity tails and battery sands

Evaluation of ores to be demonstrated

- Cyclic column leach testing and resin adsorption
- Benchmarking data for comparison with plant performance

Improved facility set-up

Leach Solution Processing Plant

R&D activities

Lixiviant recovery/recycle

- Optimisation of tails washing
- Process modelling to optimise washing to minimise gold and lixiviant losses within constraint of maintaining the water balance
- Monitor build-up of any potential deleterious species in the leach solution with recycle/reuse and impact on gold recovery

Gold recovery rate

- Lixiviant concentration (impacts also lixiviant recovery/recycle)
- Vat leach solution circulation rate

Bigger Vision

Research facility that allows in the field

- Development of alternative lixiviant systems
 - Various thiosulfate based
 - Glycine
 - Iodine/Iodide
- Testing and development of
 - Process flowsheets for a greater range of ores
 - Unit operations
- Application to
 - Tank leaching to treat fines
 - Vat, heap, dump, in-place and in-situ leaching
 - Combinations

Bigger Vision

Enabling / improving uptake of new technologies

- Mets sector able to test/develop innovations to improve productivity
- Researchers able to test/develop alternative lixiviants and process flowsheets
- Gold miners able to test and evaluate processes to treat their ore

Questions?

Paul Breuer

Gold Processing Team Leader

t +61 8 9334 8074

e paul.breuer@csiro.au

MINERAL RESOURCES

