

Tim Mulliner Technical Director - Environment **Alexis Guidon** Water Engineer

Managing a small volume of seepage (Reefton Restoration Project)

Diversion, Dilution, Treatment, or a little bit of everything? Saddle Dam Seepage – from Optioneering to Construction

AusIMM New Zealand Branch Annual Conference - Enabling a Sustainable Future

New Zealand

20 - 22 August 2023 Rydges Latimer Christchurch

Overview

- → Aim of Project
- ➔ Options Analysis
- → Multi Criteria Analysis (MCA)
- → Concept Detailed Design
- ✦ Construction

Aim of Project

Globe Progress / Saddle Dam

Operational 2006 – 2016 Reefton Restoration Project 2016 - Current

Aim of project

Long-term solution for management of seepage water from Saddle Dam Embankment

Table 1 Saddle PTS design dissolved contaminant concentration and load (Verum Group, November 2021)

Parameter	Quantity		Source		
Flow Rate	118 m³/day (1.37 L/s)		GHD (2020)		
	Concentration	Load			
	(g/m ³)	(g/d)			
As	3.0	352	≈85 th percentile of 2020/2021 dataset		
Sb	0.005	0.61	Median 2020/21 dataset (Conc.)		
Fe	12.2	1,444	Median 2020/21 dataset (Conc.)		
Sulphate	148	17,413	Median 2020/21 dataset (Conc.)		
рН	7.6	-	Median 2020/21 dataset (Conc.)		
Alkalinity	319	37,684	Median 2020/21 dataset (Conc.)		
Fe:As Ratio	4.1:1				

Potential visual / amenity risk

Option analysis, MCA and solution selection

Options analysis

Target :

Reduction in iron concentration to reduce risk of iron precipitation in receiving environment

Main challenges:

- Site Access
- Low Maintenance / Operator input solution
- Limited footprint
- No access to reticulated power supply

Options Analysis / Fatal Flaw

Oxidising / Reducing / Water Management Solutions

Table 4 Treatment Technology/Method Options – Fatal Flaws Assessment Complexity Footprint Area/Size Cost Fatal Technology (Process. Novel System Treatabilty Fatal Flaw? 44 Source Technology Fatal Flaws Pros Cons Category Flaw? O&M) Fatal Fatal Flaw Fatal Flaw? (m^2) (>200-300m Flaw? Yes Verum Inexpensive Fe will precipitate downstream Oxidisina System Cascade No No No No Yes (Poor Treatment 20 Spreadshee Proven Minimal treatment i.e. Staining) Potential Low Fe. As removal Verum (Excessive No pipina 354 5 Oxidising System Horizontal Flow Pond Not Rated Potential No No Potential Periodic sludge removal Report Footprint & low Proven Fe ppt density low Treatment) Periodic and difficult sludge removal No piping Yes Fe precipiate density low. Proven 3 Verum Oxidising System Aerobic Wetland Not Rated Yes No No No (Excessive 787 Replanting every 2 years (Verum) or Aesthetic qualities Footprint) up to 5 years (GHD) Potential for As uptake by plants Possible plant disposal issues Periodic sludge removal at a diffic to reach site Proven 4 Verum Oxidising System Cascade + VFR No No No No No None 265 Fe ppt density high Some staining may still occur Expensive piping network and construction costs. Yes More Fe to remove, may decrease (High OPEX & High As removal e removal Verum Supplemental Iron Addition + VFR Oxidising System Yes No Yes No No requires frequent 265 Expensive Proven Report O&M at difficult Possibly could use Devil's ppt May increase sludge accumulation site) ates Experimental for As removal (Verun Potential Yes Verum Small area required 6 Oxidising System Steel Slag Leaching Bed No Unknown Yes Yes (As removal not (Too novel and N/A Fe ppt can plug system Report Effective for Fe removal used at full scale complex) Slag from NI Minor additional Fe accumulation at Verum / Pump back up to Fossickers (or Low maintenance Water Manageme No No No No No None 30 GHD discharge to existing VFR) No discharge off site arge VFR. Gravity to existing VFR (HDD Very low maintenance 8 GHD No No No No Expensive (CAPEX) Water Manageme No None 30 No discharge off site through hill) Yes Proven Verum (Significant O&M, Poor removal in cold Reducing System Bioreactor 590 Good As and Fe removal Q Yes Yes

SETD addle Extention Denin Top

8

Options to Multi Criteria Analysis

Option 3. Gravity to Devils Creek VFR

Option 4a. Dilution with Small Pond (Siphon)

Option 4b. Dilution with Small Pond (Gravity)

Multi-Criteria Analysis

▲ 4 options assessed

CAPEX / OPEX / reliability / O&M inputs / performance

Sensitivity Analysis on weighting parameters

Table 8 Sensitivity Analysis							
	Default Weighting + Default Scoring	Default Weighting + Low Option 4 CAPEX Score	Default Weighting + Low Option 3 OPEX Score	High-Cost Weighting + Default Scoring	High-Cost Weighting + Low Option 4 CAPEX Score		
Weightings							
CAPEX	15%	15%	15%	40%	40%		
OPEX and Maintenance Costs	25%	25%	25%	20%	20%		
Treatability / Technical performance Risk / Certainty of Performance	20%	20%	20%	20%	20%		
Operations & Maintenance complexity/frequency, H&S (No costs)	20%	20%	20%	10%	10%		
Reliability	20%	20%	20%	10%	10%		
Total	100%	100%	100%	100%	100%		
Score Sensitivity	·			·			
Option 1 - Cascade + VFR	500	500	500	500	500		
Option 2 - Pump back up to Fossickers (or discharge to existing VFR)	555	555	555	600	600		
Option 3 - Gravity to existing VFR (HDD through hill)	625	625	550 ²	520	520		
Option 4 - Dilution with Small Pond for Seepage Only	745	700 ¹	745	730	610 ³		

Solution to design

Two infrastructure streams:

- Leachate collection and oxidation / settlement
- Dilution water from basin to mixing zone

Design & Construction

Design to construction

Dilution water supply - siphon

- Supply 10 L/s
- Floating Inlet
- Low maintenance / operator input
- Basin water levels
- Geometrical constraints

Design to Construction

Dilution water supply - Priming

- Pressure break tank at siphon outlet
- Water storage for siphon re-priming
- Easy access from top of embankment
- Alarm for siphon break

Design to Construction

Leachate Treatment

- Provide some aeration and settlement to reduce iron
- Maximise retention time
- Minimise footprint and earthworks requirements
- Safety in Design and geotechnical considerations

Iterative process to identify:

- Best volume retention
- Best hydraulic efficiency for sedimentation
- Best volume / footprint compromise

Design to Construction

Leachate treatment

Concrete pre-cast channels available on-site from previous project

Re-purposing otherwise un-used assets Lower CAPEX, good volume retention

Design to Construction

Leachate Treatment

Retained solution

Current progress

- Consent granted
- Construction complete
- System commissioning underway
- Awaiting the first test results

Acknowledgements

→ All parties involved

Verum Group

Questions?

AusIMM New Zealand Branch Annual Conference - Enabling a Sustainable Future

New Zealand

20 - 22 August 2023 Rydges Latimer Christchurch