Why is Mining like Insurance?

Or, How does a Mining Engineer become a Risk Engineer?

Sydney Branch AusIMM Sept 2025

Mike Arundel, MAusIMM

Show of hands

Most claims: Coal vs Metal

More \$\$ claims: Surface vs Underground

More variability: Commodity prices vs Insurance

premiums

Utmost Good Faith vs AS2124/AS4000

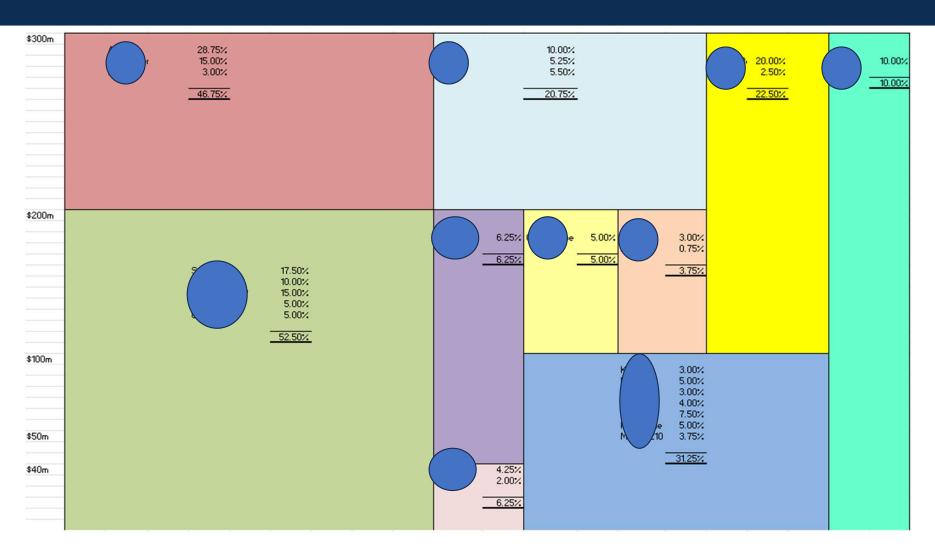
- Insurance concepts
- Risk Engineering role with Underwriting
- Loss Estimates definitions
- Risk Quality ratings
- MFL or not MFL?

Insurance Who's Who

- Insured
- Insurance Broker
- Underwriter
- Risk Engineer
- Claims Manager
- Loss adjuster
- Re-insurer

Insurance concept

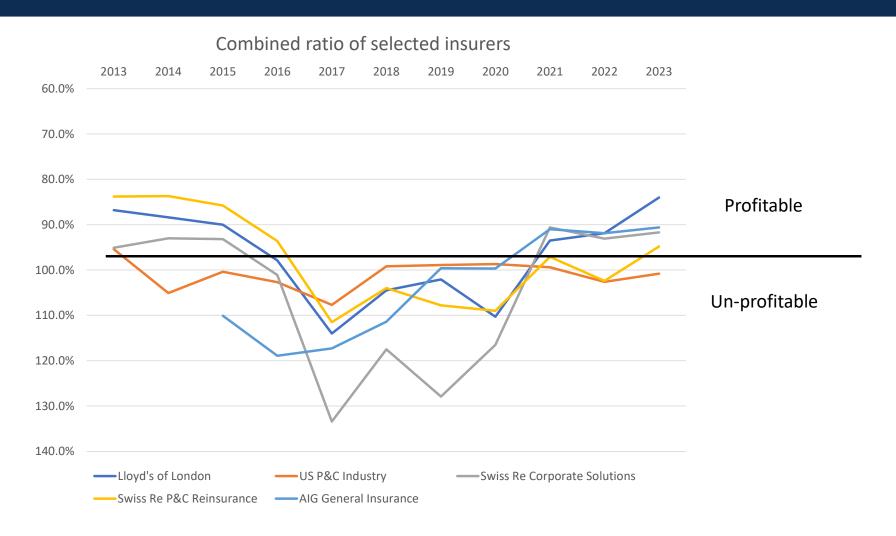
- A Promise to pay
- Uncertainty equivalence: At point of discovery drillhole, will there ever be a mine?
 - At the start of the policy, both Insured and Underwriter are uncertain... (Why?)


Premium =

- Loss Ratio (direct claim cost) +
- Operating expense +
- Acquisition cost +
- Profit

Quota Share

	Policy No.	Share	Contact Email	Claim Ref:	Payment on Account (No. 1) AUD 5,000,000 allocated as:
Insurer 1		15%			750,000
Insurer 2		15%			750,000
Insurer 3		11%		-	550,000
nsurer 4		2.5%		Ī	125,000
Insurer 5		10%		C I	500,000
Insurer 6		10%			500,000
Insurer 7		10%			500,000
Insurer 8		15%			750,000
Insurer 9 Insurer10		6.5%			325,000
		5%			250,000


Complex layers mud map

Why is Insurance like Mining

- Community perception
- Changing risk exposures
- Input cost rises
 - Re-insurance at 20year highs,
 - repairs costs up 30%-40%
 - taxes and duties (QLD coal royalties??)
 - diesel cost
 - Steel for plant expansions
 - Grey waterfall of talent retirement

Winning isn't normal!

Winning isn't normal!

Swiss Re. Mining Portfolio Losses - % Breakdown \$\$ by causation

- •9% Machinery Breakdown
- •14% Tailings
- •15% Fire
- •17% Structural Integrity
- •20% Geotech
- •23% Nat Cat

What problem are we trying to solve?

WARREN BUFFETT'S UNDERWRITING DISCIPLINES

Understand all exposures that might cause a policy to incur losses

Conservatively assess the likelihood of any exposure actually causing a loss and the probable cost if it does

Set a premium that, on average, will deliver a profit after both prospective loss costs and operating expenses are covered

Be willing to walk away if the appropriate premium can't be obtained

Winning Together

BHSI risk engineering team 2x NZ, 12x in Aust – Sydney, Melbourne, Perth

Customer focused

BHSI

A day in the life of a risk engineer

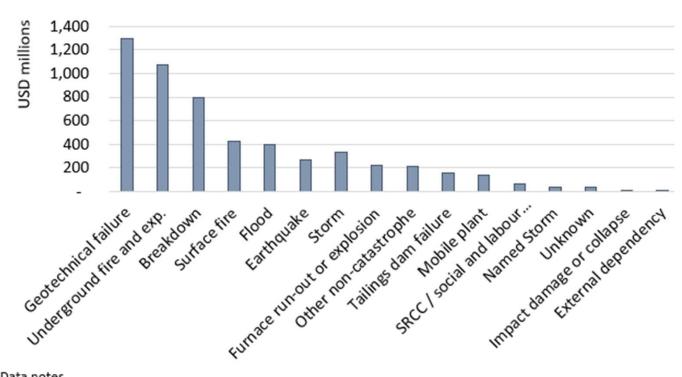
Last 12 months:

- 12 site Surveys
- Assorted Desktop reviews
- 17 Customer/broker meetings
- 31 CPD activities

Portfolio Analysis

BHSI

BHSI Australia Mining Portfolio highlights


- 90 policies
- About \$40M premium
- Smallest capacity account \$4.5M, Largest over \$70M
- Total capacity deployed \$2.3bn AUD
- Typical line size 15%

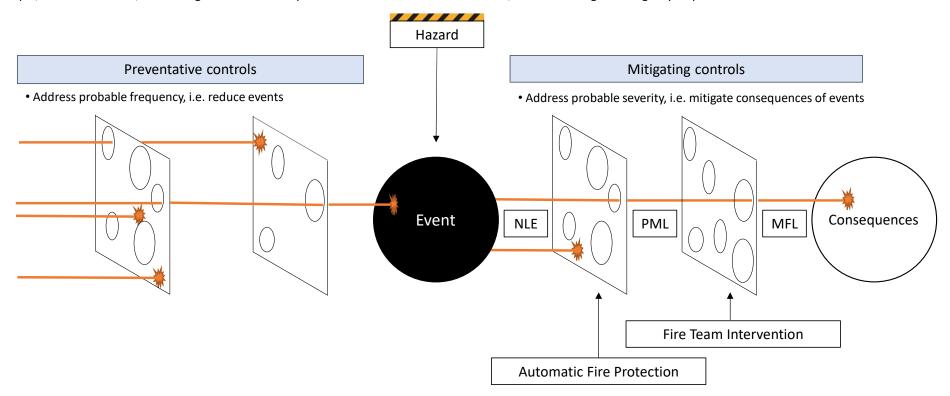
•	Average	UG	sublimit to LoL	x7
---	---------	----	-----------------	----

- Average Tails sublimit to LoL x8
- Average Machinery s/l to LoL x4

- Library of losses
 - Over 900 sites,
 - More than \$800Bn USD insured values,
 - Above \$5Bn USD of Claims
- Match to TIV, adjust for deductibles and SIR
- Match to program limit
- Sort by Country/Occupancy/inherent risks
- BI is 70% of Claim \$\$
- 2010 NOT a good year, 2013 also a shocker

Show of hands recap

Data notes


Geotechnical events (e.g., mine seismicity) are not considered nat. cat. events (i.e. are not coded as earthquake). Chart and table data are inflated and commodity price-adjusted to July 1, 2020

- ISR (Industrial Special Risk) is certainly not a plain English policy!
- Property Insured;
- Extent of Covers;
- Property Exclusions;
- Perils Exclusions;
- And, Write-backs

Bowtie concept

The use of the bowtie concept supports the assessment of whether NLE = PML, and PML = MFL; as the engineer rates the default controls, it becomes apparent whether the controls support a differentiation between NLE, PML and MFL.

For example, for a fire scenario, the scoring of automatic fire protections defines whether NLE = PML, and the scoring of emergency response then defines whether PML = MFL.

What's a Loss Estimate?

NORMAL LOSS ESTIMATE

The Normal Loss Estimate (NLE) is defined as the largest monetary loss resulting from a single event under normal conditions with all active and passive protection systems operating as-is and fire department responding as planned. Credit for production make-up is given only for well-established Disaster Recovery or Business Continuity Plans.

PROBABLE MAXIMUM LOSS

The Probable Maximum Loss (PML) is defined as the largest monetary loss resulting from a single event under adverse conditions with a major active protection system impaired, but remaining systems operating as is and fire department responding as planned. Credit for production make-up is given only for well-established Disaster Recovery or Business Continuity Plans.

MAXIMUM FORESEEABLE LOSS

The Maximum Foreseeable Loss (MFL) is defined as the largest monetary loss resulting from the most severe event with all active and passive protection systems impaired and no fire department response.

The 5 X 5 Risk Matrix

Australian Risk Appetite

Consequence

Likelihood

Dead Set

Nah Yeah

Yeah

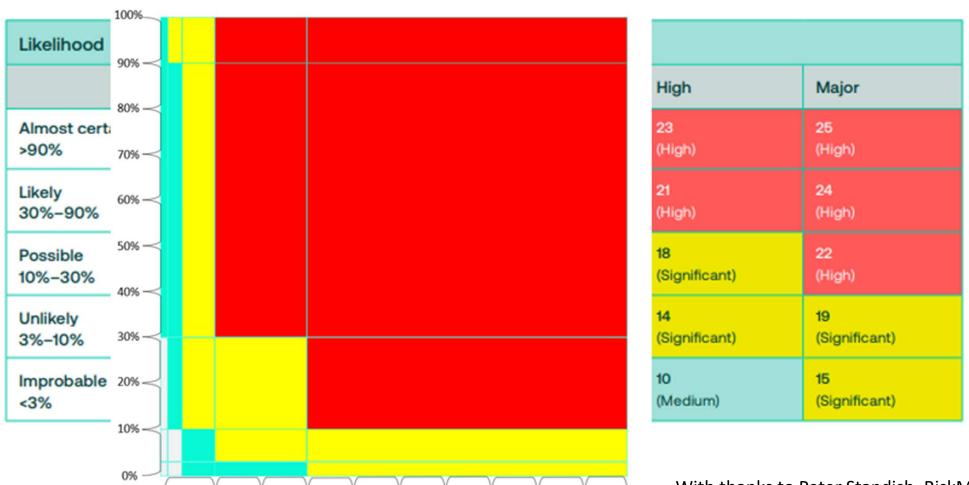
Yeah Nah

Nah

Lower than	Don't be a	She'II be	Fair	Rooted	
a lizard's	sook	apples	Dinkum		
She'll be right	She'll be right	She'll be right	Faaark	Faaark	
She'll be	She'll be	She'll be	She'll be	Faaark	
right	right	right	right		
She'll be	She'll be	She'll be	She'll be	She'll be	
right	right	right	right	right	
She'll be	She'll be	She'll be	She'll be	She'll be	
right	right	right	right	right	
She'll be	She'll be	She'll be	She'll be	She'll be	
right	right	right	right	right	

by Eric Pinkerton on Twitter

@ericpink


The risk ranking process revisited

50%

0%

10%

20%

100%

With thanks to Peter Standish, RiskMentor

Winning isn't normal!

Old way of insurance risk assessing:

COPE

Construction

Occupancy

Protection

Exposures

(Good for tarriff books – fixed rates, broker/underwriter relationship is key.

A better way:

Who's on the team?

Have they done it before?

Can they do it again this time with everyone making a buck on the way?

Opportunity to think about Accumulations, Supply Chain risks, sub-limits, Property and/or Perils Exclusions in the ISR wording.

Inherent risk vs Managed risk

COPE review – the old way

Construction risk assessments are a whole topic in themselves!

COPE review – Materials of Construction

Please – no more EPS switchrooms!

COPE review – Occupancies like SXEW

Oct 2001 (2nd fire) event shown here. Fuel consumed in 36 hours – 1,000m3 kerosene.

9 months BI

And don't forget the shaft loss at OD:

https://www.bhp.com/news/media-

centre/releases/2009/10/olym
pic-dam---update

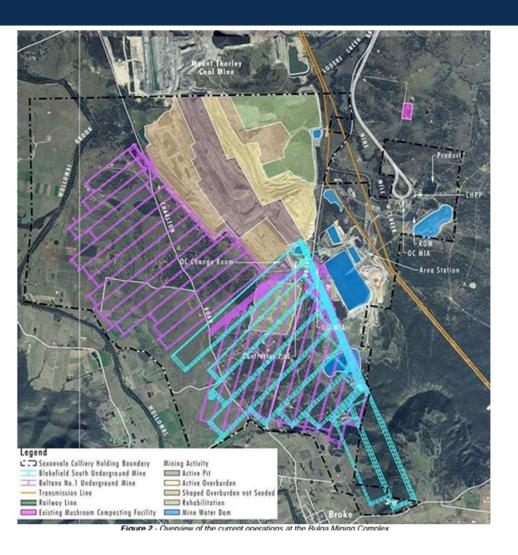
COPE review – Occupancy incl Tailings

Photo of the Northern and Southern (forefront) Tailings Dams at Cadia

COPE Review - Protection

Image supplied by Atlantic Ltd

Hot Work fire (AGAIN!!)


Despite an active ERT response, still a major loss.

PD was 10% of sums insured BI first estimate 9 months, but during time of loss iron by-products no longer profitable

Plant had never reached nameplate BI cover was standing charges with unusual drafting so standing charges increased during loss.

FM Global report that 27% of Claims on mines are fire, and Hot Work is 50% of Fire losses.

Audience participation: MFL or not MFL?

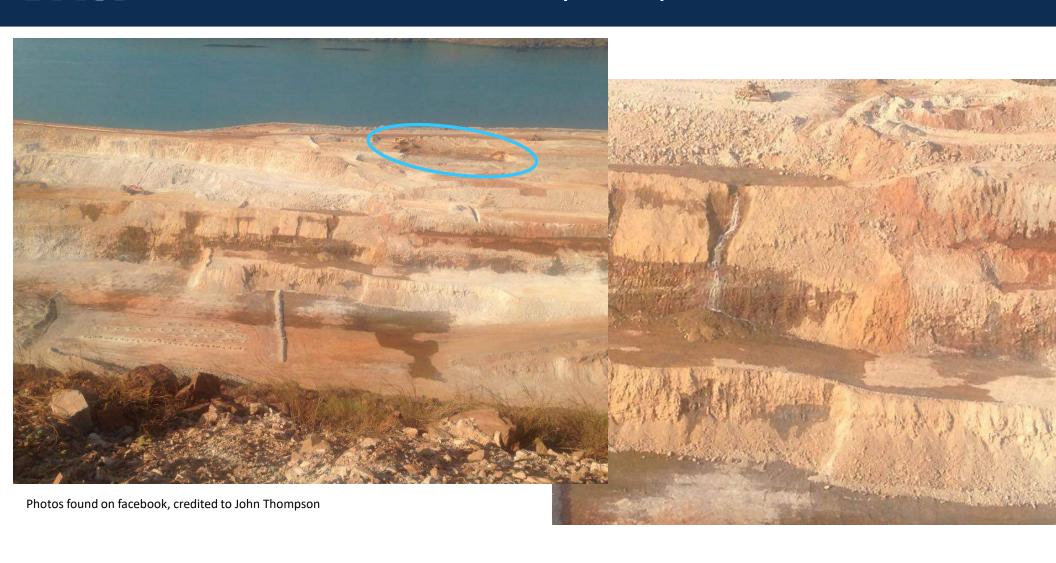
Investigation Report

Fire and explosion on Longwall No 1 Tailgate at the Blakefield South Mine 5 January 2011

Bulga Underground Operations was working a seam at Blakefield South Mine that was completely new to them.

Bulga Underground Operations has not invoked a Level 1 response for Blakefield South Mine in accordance with the SCMP... June, Oct. and Nov. surveys [..] identified the Level 1 TARP had been exceeded.

Audience participation: MFL or not MFL?



Audience participation: MFL or not MFL?

- Reported as \$350M expenditure + significant management time
 - Ensham's Energy Efficient Opportunities Public Report
- 12 month BI, town of Emerald also suffered flood damage loss of accom for recovery crews
- FOI application by Lead insurer for information between site and Mines Dept regarding levees
- Claim denied on basis of non-disclosure, concerns about cover of Levees as unisured assets
 - NB link between what is damage, what perils are covered

Audience participation: MFL or not MFL?

MFL or not MFL?

An interesting claim when the 1st slump happened 26th Oct, with a policy renewal date of 31st October.
Wall failed mid-Nov.

Which policy year? (some difference to the panel of insurers)

https://www.mtgibsoniron.com.au/wp-content/uploads/11-11-2015-2015-Annual-General-Meeting-CEO-presentation.pdf

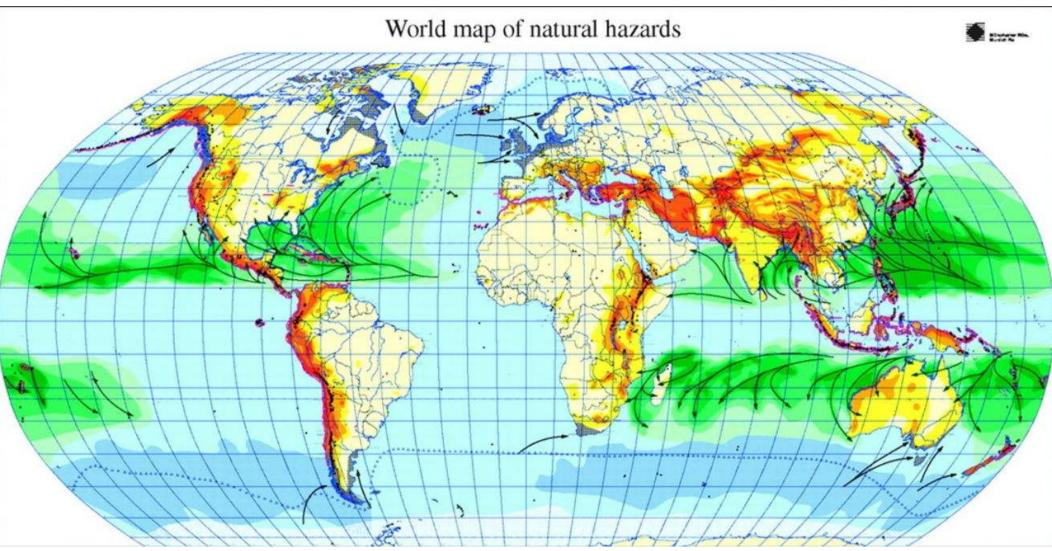
It's all about the Cat!

It's all about the Cat!

July 2025								
CAT Nan	Event Name	Financial Year	State	Туре	Year ~	ORIGINAL LOSS VALUE	NORMALISED	LOSS VALUE (2022) 🛂
CAT995	Eastern Sydney Hailstorm	FY98	NSW	Hail	1999	\$ 1,700,000,000	\$	8,845,700,000
CAT746	Cyclone TRACEY	FY74	NT	Cyclone	1974	\$ 200,000,000	\$	7,397,400,000
CAT894	Newcastle CDB Earthquake	FY89	NSW	Earthquake	1989	\$ 862,000,000	\$	6,542,200,000
CAT221	SE Queensland and NSW Floods	FY21	NSW and SEQ	Flood	2022	\$ 6,375,616,815	\$	6,375,616,815
CAT671	Cyclone DINAH	FY66	FNQ	Cyclone	1967	\$ 33,500,000	\$	6,189,500,000
CAT741	Brisbane Floods	FY73	SEQ	Flood	1974	\$ 68,000,000	\$	5,258,600,000
CAT672	Bushfire	FY66		Bushfire	1967	\$ 40,000,000	\$	4,103,600,000
CAT852	Brisbane Hail Storm	FY84	QLD	Hail	1985	\$ 180,000,000	\$	3,745,900,000
CAT073	East Coast Low	FY06	NSW	Storm	2007	\$ 1,480,000,000	\$	3,394,600,000
Undeclare	d Cyclone ELAINE	FY66	SEQ	Cyclone	1967			2,744,400,000
CAT904	Northern Sydney Hailstorm	FY89	NSW	Hail	1990			2,720,200,000
CAT832A	Ash Wednesday Bushfire (VIC)	FY82	VIC	Bushfire	1983	\$ 138,000,000	\$	2,707,000,000
CAT093	Black Saturday Bushfire	FY08	SA	Bushfire	2009			2,567,100,000
CAT102	Melbourne Storm	FY09	VIC	Storm	2010			2,536,300,000
CAT112A	Brisbane Flooding	FY10	SEQ	Flood	2011	\$ 1,356,000,000	\$	2,450,400,000
CAT144	Brisbane Hailstorm	FY14	SEQ	Hail	2014	\$ 1,391,556,200	\$	2,430,500,000
CAT195	2019/20 Bushfires (NSW,QLD,SA,VIC)	FY19	SEQ	Bushfire	2019	\$ 2,319,164,486	\$	2,405,400,000
CAT173	Cyclone Debbie	FY16	FNQ	Cyclone	2017	\$ 1,774,598,765	\$	2,348,300,000
CAT673	SEQ Hailstorm	FY66	SEO	Hail	1967	\$ 18,000,000	\$	2,242,400,000
CAT731	Cyclone MADGE	FY72	FNQ	Cyclone	1973	\$ 30,000,000	\$	2,126,800,000
CAT114	Cylone Yasi	FY10	FNQ	Cyclone	2011	\$ 1,412,239,000	\$	2,100,700,000
CAT201	January Hailstorms	FY19	SEQ	Hail	2020	\$ 1,681,889,372	\$	2,025,300,000
CAT185	NSW Hailstorm	FY18		Hail	2018	\$ 1,357,939,813	\$	1,743,900,000
CAT103	Perth Storm	FY09		Storm	2010			1,726,100,000
CAT911	Sydney Region Storms	FY90		Storm	1991			1,708,400,000
CAT153	East Coast Low	FY14		Storm	2015	\$ 949,615,700	\$	1,662,500,000
CAT233	Christmas Storms	FY23		Flood	2023	\$ 1,607,357,649	\$	1,607,357,649
CAT133	QLD Flooding Ex Cyclone Oswald	FY12	FNO	Cyclone	2013			1,581,300,000
CAT191	FNO Monsoonal Flood	FY18	FNO	Flood	2019			1,563,500,000
CAT118	Melbourne Xmas Day Hailstorm	FY11		Hail	2011			1,561,000,000
CAT252	Ex-Tropical Cyclone Alfred	FY24	NSW, QLD	Flood	2025			1,401,614,221
CAT864	Western Sydney Hails Event	FY86		Hail	1986			1,315,300,000
CAT032	Canberra Bushfire	FY02		Bushfire	2003			1,272,000,000

https://insurance council.com. au/wp-content/uploads/2025/08/ICA-Historical-Normalised-Catastrophe-Master-Updated-July-2025-1.x lsx

Maitland floods – quite often


Figure 1: A schematic of the Hunter Valley coal chain (HVCC), showing rail track and the locations of mines and coal loading facilities

https://www.facebook.com/share/p/19PNnMz1uW/

QLD coal logistics

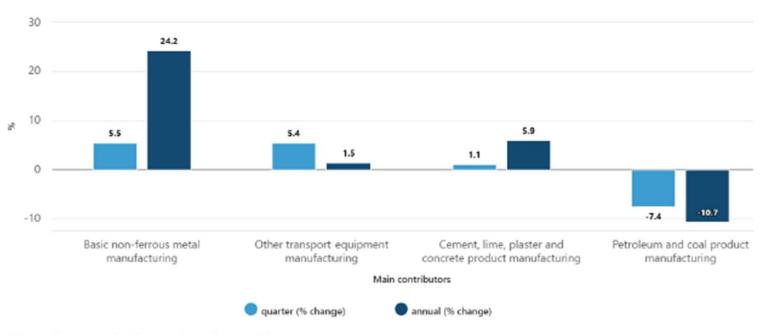
	Normal rail route to Port	Options	BI share
Mine A	Goonyella corridor, via Black Mountain to Hay Point	Yes - Reverse in loop, go north through Collinsville to Abbot Point.	(examples only) 15%
Mine C	Goonyella corridor, via Black Mountain to Hay Point	(too far north to go to Gladstone) Yes - Use triangle at Moranbah to access Abbot point via Collinsville. Probably impractical to go to Gladstone.	20%
Mine E	Goonyella corridor, via Black Mountain to Hay Point	Yes - Use Coppabella triangle to access Abbot point through Collinsville.	5%
Mine G	Goonyella corridor, via Black Mountain to Hay Point	Partial - Reverse in loop then south to Gladstone	15%
Mine I	Goonyella corridor, via Black Mountain to Hay Point	Yes - Reverse in loop then south to Gladstone (trains can use German Creek mine with 2way loop points).	30%
Mine K	Via Rockhampton to Gladstone ports	No	5%

https://www.munichre.com/en/insights/natural-disaster-and-climate-change/50-years-natcat. item-16 ab 4064 b 532 a 6d 70 ae 3b 9fd 839645 c 4. html

Claim cost increases

Output Manufacturing prices rose .5% over the Sept Qtr. and 3.1% over the past 12 months.

Output of manufacturing prices, quarterly and annual percentage change and index



Source: Australian Bureau of Statistics, Producer Price Indexes, Australia September 2024

Claim cost increases

Main Contributors to index price changes:

Output manufacturing prices main contributors, quarterly and annual percentage change (a)

a. Main contributors are ordered by quarterly contribution to index movement

Source: Australian Bureau of Statistics, Producer Price Indexes, Australia September 2024

Audience participation: MFL or not MFL?

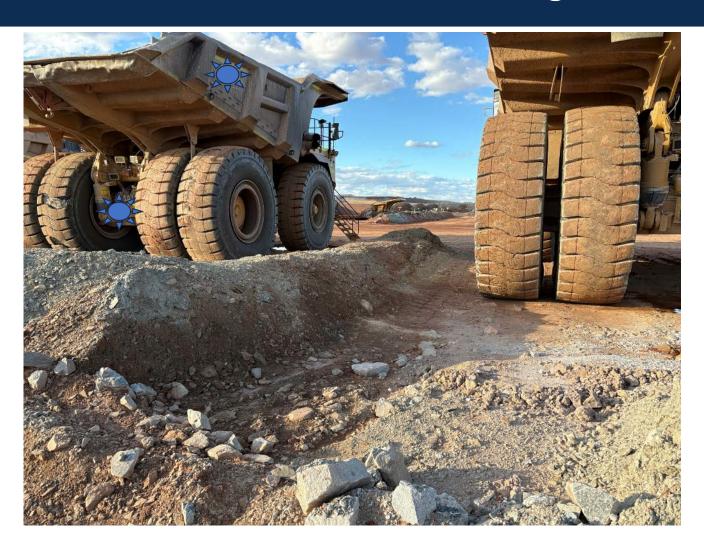
Audience participation: MFL or not MFL?

Tarmoola pit slide in 2004, bought by Sons of Gwalia (acquired Pacmin in 2001).

Hedge book + major pit slide = Unhappy combination

Mine is running again (Vault Minerals)

Top Photo on Flikr by Stuart Smith https://www.flickr.com/photos/studiaphotos/49666937237

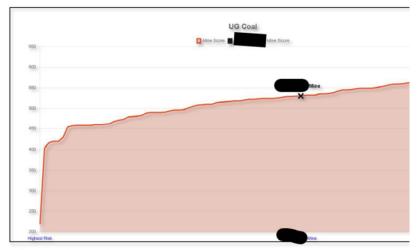

Mobile plant go-lines: MFL or not MFL?

11 bays with tyre separators - TBC Cat789 or Komatsu 830??

Better arrangement for Go-lines

Workshop accumulations

https://www.mineralresources.com.au/news/onslow-irons-road-most-travelled



What does the mining company we want to insure look like?

- Inward focus for daily priorities;
- Outward focus for big ticket risks (showstoppers);
- Learning from others;
- Not afraid to hear bad news, and alert for changes from the current situation;
- Thinking ahead so not fighting fires day to day;
- Responding to risk recommendations.

Simplicity over Complexity

1.6 Comparative Scores (Between other sites - within its sector)

See Section 2.1 for details of comparison calculations

6.2	Underground Machinery and Equipment	46
6.2.1	Continuous Miners	46
6.2.2	Coal Clearance Equipment	47
6.2.3	Underground Conveyors	47
6.2.4	Underground Bins	48
6.2.5	Summary of Risks for Underground Machinery and Equipment	48
6.3	Surface Operations	
	Coal Handling and Preparation Plant (CHPP)	
	Surface Storage of Coal	
	Surface Transport	
	Product Despatch	
	Fuel and Chemical Storage	
	Storage and Handling of Explosives	
	Summary of Risks for Surface Operations	
6.4	Surface Structures, Machinery and Equipment	
	Buildings and Other Structures	
	Winders	
	Ventilation Fans	
	Compressors	
	Surface Conveyors and Transfer Stations	
	Rotary Breaker	
	Storage Bins	
6.4.8	Power Supply, Transformers and Other Surface Electrical Equipment	60
6.4.9	Water Supply and Storage	61
6.4.10	Theft and Vandalism	62
6.4.11	Summary of Risks for Surface Structures, Machinery and Equipment	62
6.5	Natural Hazards	65
6.5.1	Earthquake	65
6.5.2	Landslip	65
6.5.3	Surface Flooding	65
6.5.4	Drought	65
	Bushfires	
6.5.6	Electrical Storms	66
6.5.7	Summary of Risks for Natural Hazards	66
6.6	Environmental	
	Fuels, Oils and Other Chemicals	
	Water Treatment and Storage	
	Reject Solids	
	Summary of Environmental Risks.	
6.7	Suppliers	
0.7	11.5	
endix A	Risk Matrix	
endix B	Risk Register	
endix C	Management Plans	
endix D	Notifications	
endix E	Machinery	134

7.5	Outbye Roadways Strata Control	54
7.6	Mine Access	55
7.7	Explosives	56
7.8	Windblast	56
7.9	Mine Gases	57
7.10	Gas Drainage	60
7.11	Outburst	60
7.12	Rock / Coal Burst	60
7.13	Frictional Ignition	61
7.14	Coal Dust	61
7.15	Spontaneous Combustion	63
7.16	Underground Transport Collision / Impact	64
7.17	Ventilation	65
7.18	Inundation	66
7.19	Underground Housekeeping	68
8 PL	LANT AND MACHINERY RISKS	69
8.1	Maintenance System	
8.2	Mining Equipment and Spares	
8.3	Mobile Equipment and Spares	
8.4	Fixed Plant and Spares	
8.5	Coal Preparation Plant (CPP) and Lidsdale Siding	
8.6	Electrical Equipment and Spares	84
8.7	Condition Monitoring/Structural Integrity Program	87
8.8	Plant and Machinery Housekeeping	90
9 IN	IFRASTRUCTURE RISKS	91
9.1	Buildings/Occupancy/Construction	
9.2	Stockpile Spontaneous Combustion	91
9.3	Impact/Collision	92
9.4	Environmental Management	
9.5	Tailings Disposal	94
9.6	Housekeeping	96
10 E)	KPOSURES	97
10.1	NATCAT Exposures	
10.2	Non-NATCAT Exposures	10
11 FI	RE PROTECTION	10
11.1	Fire Water Supply	
11.2	Fire Pumps	
11.3	Underground Fire Protection Systems	107
11.4	Surface Fire Protection Systems	109
11.5	Mining Equipment Fire Protection	
11.6	Fixed Plant Gaseous / Foam / Chemical Fire Suppression	11
11.7	Sprinkler/ Deluge Fire Protection	113
11.8	Flammable Liquids and Dangerous Goods	
11.9	Fire Detection, Alarm Systems and Reporting	
11.10	Fire Extinguishers	119
11.11	Separation	
11.12	Hot Work and Impairment Permits	110
11.13	Fire Protection Systems Inspection and Testing Program	110
11.14	Fire Protection Management	110
	-	

Winning isn't normal

- Who's on the team?
- Have they done it before?
- Is the deal fair to all parties?
- Can you give examples of things going wrong?
- What are you changing/improving at site (and why?)

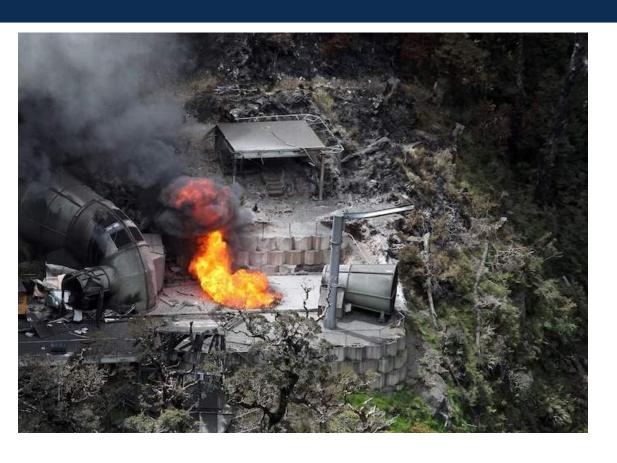
Because:

- Its People are who will shortcut procedures
- Its People are who will defeat interlocks
- Its People are who will ignore alarms

Housekeeping standards

At least one of these conveyors shows signs that (some) regular cleaning is happening

Housekeeping standards



One example of production pressures vs Safety

- Putting this another way, the mine management was constantly being held accountable for the production, via monthly performance reviews and by the system of remuneration, but there was no corresponding mechanism holding management accountable for how well it was managing [the] risk
- What seems to have happened is [...] the advice of the technical expert in Brisbane was overridden by the mine's management, in order to maintain the production schedule.
- Grosvenor had five different ventilation officers in the 19 months prior to the accident. My inquiries indicate that appointees soon realised they didn't have the resources and influence to enable them to do job, and so, resigned.
- https://www.parliament.qld.gov.au/Work-of- Committees/Committees/Committee-Details?cid=173&id=4194

Audience participation: MFL or not MFL?

The mine was new and the owner, Pike River Coal Ltd (Pike), had not completed the systems and infrastructure necessary to safely produce coal.

The drive for coal production before the mine was ready created the circumstances within which the tragedy occurred.

https://pikeriver.royalcommission.g
ovt.nz/Volume-One---Overview

Pike River claim settled

A consortium of European insurance companies has agreed to pay out \$NZ80 million (\$64.32 million) to the receivers of the Pike River Coal company.

The sum falls short of the capped NZ\$100 million (\$80.4 million) insurance held by Pike River Coal and covers the damages and interruption of business caused by fatal explosions at the New Zealand mine in November 2010.

Winning isn't normal

- Mining has volatility
 - Don't let the Reinsurer tail wag the dog
- Needs deep knowledge of the industry, markets, and personalities
- Don't forget history of the pits/industry
- Change is a constant (and not necessarily a risk)
- Underwriter must be able to demonstrate the value an insurer brings

Don Alhambra

The end is easily foretold,
When every blessed thing you hold
Is made of silver, or of gold,
You long for simple pewter.
When you have nothing else to wear
But cloth of gold and satins rare,
For cloth of gold you cease to care —
Up goes the price of shoddy.
In short, whoever you may be,
To this conclusion you'll agree,
When every one is somebodee,
Then no one's anybody!

W.S. Gilbert The Gondoliers; or, The King of Barataria

RESPECT

SIMPLICITY

COMPLEXITY

CUSTOMER FOCUSED

INTEGRITY

A **FOREVER** BUSINESS HAVE A SENSE OF URGENCY, DON'T BE IN A RUSH

PITCHING

—AND— CATCHING

EXCELLENCE

CAPABILITIES CHARACTER

WINNING ISN'T NORMAL L O N G T E R M FOCUSED

COLLABORATION

BHSI

INDIVIDUAL EXCELLENCE IN A TEAM FRAMEWORK A POWERFUL PLATFORM DRIVEN BY EXCEPTIONAL PEOPLE WINNING TOGETHER

POSITIVE INTENT

GOING
WIDE
GOING
DEEP

PASSION