Machine-learning image analysis on phenocrysts to reconstruct lithostratigraphy in mineralised terrains: An example with dacites in the Mt Read Volcanics

Martin Jutzeler, Yasin Dagasan, Rebecca Carey

Datarock.

Australian Government Australian Research Council

CODES

CENTRE FOR ORE DEPOSIT AND EARTH SCIENCES

UNIVERSITY of

TASMANIA

Mt Read Volcanics dacites

- Extensive coherent and brecciated **feldspar-phyric dacitic** horizons
- Interpreted as prospective horizons
 - Equivalent of the mixed Sequence of the **Que-Helley Volcanics ?**
 - Correlative between Rosebery and White Spur area ?

Interpreted correlatives between in the Que-Hellyer Volcanics (Fonseca 2016)

200 m

WSP 9

Automated quantification of crystal size distribution (CSD) allows for fingerprinting coherent textures

A novel technique

- Phenocryst (feldspar) content in volcanic rocks
- Machine learning automation
- Assumes homogeneous crystal content in coherent bodies

Direct application for stratigraphic correlations in:

- Poorly exposed / buried formations
- Up to moderately altered formation
- Complexly tectonised formations

Technique is complementary to:

- Outcrop/Core description
- Bulk rock and crystal geochemistry

Application to Mt Read Volcanics

Correlations in prospective dacites

Phenocrysts can be used as a signature in coherent and coarse clastic facies

- How different are these two basalts? ٠
- Can we quantify how different they are? ullet

FELD СРХ

Inference Workflow

Has new

scales?

Image

Yes 🔪

Resolution

Model

Resolution Known

Images

Image selection & analysis workflow

Several tens of rocks were used to teach the ML code

High resolution, high accuracy Machine Learning segmentation

Test on multiple slices of a same fresh rock

Application to Tasmanian dacites – *a needle in a haystack?*

- 10 Holes in Que Hellyer and Rosebery-White Spur areas
- 102 selected samples
- Random and targeted sampling

Que-Hellyer

• Multiple CSD populations = Multiple dacitic bodies

Que-Hellyer

- MAC-40 and MCH-1 are 1 km apart
- CSD totally different no match
 - Independent coherent bodies

Que-Hellyer

- Good lateral continuity between holes
- Laterally very extensive volcanic bodies, but possible
- Some facies are clearly intrusive (dyke/sill)

This preliminary interpretation does not include downhole information and known faults yet

Rosebery-White Spur

Same hole comparison: WSP-5

- Alteration effects not obvious: all rocks are altered
- 3 distinct CSD populations
 →3 distinct bodies

Rosebery-White Spur

YWS-1 compared to WSP-9 (nearest Hole)

YWS-1 is unlike any other dacite in the area

- Coarse grained
- Crystal-rich
- Unimodal distribution
- → Coherent body with no stratigraphic equivalent

Rosebery-White Spur

Interpretation of all CSD facies

- Spread and isolated dacitic bodies
- Some dacites must be intrusive

This preliminary interpretation does not include downhole information and known faults yet

Independent verification by geochemistry

- 21 analyses (major + traces) in all 10 cores
- Sampling strategy
 - Least altered domains
 - Fully independent from CSD calculations

Composition

- Andesite-rhyolite
- Altered rocks

CSD groups

- In compositional clusters
- Validation of the CSD method

Summary

- Novel, automated volcanic facies analysis method
- The method uses *the* ubiquitous feature in most volcanic rocks: feldspars
 - Volcanic architecture reconstruction
 - Identification of key stratigraphic markers
 - Complementary to geochemistry
 - Easily exportable to other formations

UTAS-led voyage to W-Tasmania March-April 2023

- Landslide processes
- Sedimentation processes
- Tsunami modelling
- Offshore geological map
- Habitat mapping

42.800

-43.200

-43.400

Fig. 3 3D view of the landslide headscarp and deposit. The section of collapsed shelf is ca. 50 km long. The ridge in the foreground may represent a much older landslide deposit.

Piston coring Seismic reflection Dredging Deep-towed camera

Phenocrysts are the most fundamental characteristic texture in volcanic rocks

- Primary qualitative characteristic to name volcanic rocks
- Most volcanic rock contain phenocrysts
- Phenocryst content varies between volcanic bodies (0-60% crystals)
- Phenocryst populations overall homogeneous in one volcanic body
- Feldspars (K-Feld, plagio) are overall ubiquitous in volcanic rocks

After Simpson, 2006

CSD Workflow: Machine-Learning & trained Geologist

- 1. Outcrop/Core photo (DSLR, iPhone) with ad-hoc scale
- 2. Area pre-selection
- 3. Area selection
- 4. Scaling
- 5. Deep Learning
- 6. Quality check & 'manual' improvements
- 7. Extraction of statistical values
- 8. Export in CSV files
- 9. Import into an Excel macro
- 10. Comparative analysis of size & shape of crystals

Human Automated

Model Building and Updating

Labels

- Datarock CVAT platform
- 3 separate deep learning trained using Mask RCNN*
 - \circ Resolution Model
 - Cropping Model
 - Segmentation Model

Libraries

- Detectron2 library in Python
- imea package in Python for quantitative measurements of crystal shapes

Same rock shows very similar CSD

