Datarock.

Textural analysis of large scale geophysical data sets with computer vision algorithms

Dr. Thomas Ostersen

Who are Datarock?

- Datarock is a mining technology company
- We build productionised machine learning solutions for the mining industry
- These solutions extract valuable geological and geotechnical information from imagery, video and point clouds

Datarock.

Powerful cloud-based imagery and video processing platform service

-0

Datarock.

Renowned Applied Science team made up of experienced geoscientists and data scientists Leading industry experts in leveraging Al to solve geoscience challenges

Prospectivity Mapping 101

- Mineral prospectivity is a function of geological, geochemical and geophysical data quantified in evidence layers
- We approximate this function with a statistical model trained on known mineral occurrences
- Running inference with model allows us to derive a map delineating the spatial distribution of 'prospectivity'
- Important to select evidence layers that are sensitive to the mineral system being targeted

NE Tasmania Sn-W Prospectivity Mapping

- Pixel-wise modelling using various geophysical and remote sensing data sets as evidence layers
 - Gravity data sensitive to low density granites
 - Radiometrics sensitive to evolved granites at surface
 - Magnetics sensitive to 'quiet' response of evolved granites
- Key limitation of the method is that pixels are treated as isolated data points
 - This is not how humans interpret geoscientific maps!
 - We interpret the absolute values as well as *texture* (the relationship between pixels)
 - Computer vision algorithms can help us

Computer Vision 101

- Computer science field concerned with algorithms that interpret and understand visual data
- ImageNet → long running image classification competition
- Convolutional neural network models bested human performance in ~2015

ImageNet Examples

ImageNet Competitor Scores vs. Time

Convolutional Image Features

Convolutional layers learn textural features in the image

- The complexity of features captured increases with number of layers in the model
- Training NN models requires a lot of computing power and data
- Models trained on generic ImageNet photos and their corresponding labels are sensitive to a wide range of textures with varying complexity

Convolutional Layers

Geophysical Imagery

- Human interpretation of this data focuses on texture
 - Eg: dolerite dykes and sills in Tasmania basin have distinctive magnetic texture
- We can use pre-trained networks to quantify image texture
 - This is transfer learning
 - Using insights gained from one machine learning task (classifying ImageNet) to inform a different task (quantifying geophysical texture)
- This requires a degree of data preparation as models ingest 3band RGB imagery

Composite Radiometrics Inc. Western Tiers Survey

		and a
Source: Duffett, Ja	an 2022, p	ers.
comm	۱.	

80 km

60

Legend

1.28cps

Total Count Radiometrics

30.0cps

Geophysical Imagery Compositing

- Used QGIS to stack magnetics, gravity and radiometrics data into a composite image
- Added a gravity vertical hillshade layer to highlight gravity gradients in the image
- This is a *completely* subjective process
- Devonian granites are distinctive with low gravity pale blues ± greens
- Data now ready for texture feature extraction

Geophysical Imagery Compositing

- Used QGIS to stack magnetics, gravity and radiometrics data into a composite image
- Added a gravity vertical hillshade layer to highlight gravity gradients in the image
- This is a *completely* subjective process
- Devonian granites are distinctive with low gravity pale blues ± greens
- Data now ready for texture feature extraction

Image Tiling

- Geophysical composite image sliced into square tiles with 80% overlap
- Also generated a tile centred on all Sn-W mineral occurrences
- This can be done at different scales of investigation using 4km in this example

Feature Extraction

- Image tiles fed through pre-trained ResNet-50 model
- 512 feature vectors describing textural information extracted for each tile
- Values are completely arbitrary
 - Feature X0 may represent presence of dog ears or car tyres → details irrelevant

Image Tiles

Feature Extraction with Pretrained ResNet-50 Model

Table of Feature Vectors for All Image Tiles

	img	XO	X1	X510	X511
0	snw_minocc_depid_1286.png	0.552817	0.443831	1.063608	2.338869
1	snw_minocc_depid_5382.png	3.037738	1.088314	2.007402	0.304402
2	snw_minocc_depid_2409.png	0.424897	1.445704	2.057926	6.006111
3	snw_minocc_depid_1275.png	4.598716	2.969924	1.977413	1.056619
4	snw_minocc_depid_2713.png	3.033064	5.163166	1.276369	5.133771
837	comp_500dpi_60_69.png	2.445644	0.692269	0.236308	1.511673
838	comp_500dpi_1_100.png	2.445644	0.692269	0.236308	1.511673
839	comp_500dpi_8_101.png	2.610287	3.666613	2.538560	0.667721
840	comp_500dpi_60_28.png	3.035514	3.928397	2.200748	1.255313
841	comp_500dpi_5_108.png	2.445646	0.692269	0.236311	1.511677

Textural Similarity Measures

- Images with similar textures will have similar feature vectors
- We use cosine distance to quantify similarity
 - Small cosine angle between images → similar
 - Large cosine angle between images → dissimilar
- Calculating cosine distance in 512dimensional feature space allows us to quantify textural similarity

Similarity to Royal George

- Calculate cosine distance in feature vector space to all tiles from the Royal George Sn-W occurrence tile
- Similar tiles tend to be dominated by a mottled green texture from the radiometric layer
- Broad scale brightness gradients reflects gravity hillshade layer
 - This is sensitive to granite edges

Similarity to Royal George

- Similarity to Royal George Sn-W occurrence tile plotted as a grid
- A number of tiles in Tasmania basin have high similarity
 - Isolated areas with strong radiometric responses

Similarity to Royal George

- Similarity to Royal George Sn-W occurrence tile plotted as a grid
- A number of tiles in Tasmania basin have high similarity
 - Isolated areas with strong radiometric responses
- Reasonable 1st order spatial correlation between Royal George similarity and other Sn-W occurrences
- Next slide: Meredith Granite area

Similarity to Renison Bell

- Renison Bell tile has strong broadscale brightness gradient effect from gravity hillshade layer
- Also has some linear blue textures from the magnetic layer
- Minor radiometric signature

Similarity to Renison Bell

- Renison Bell tile has many lookalikes in non-prospective areas
 - Tasmania basin, inc. Tamar graben
- Blue linear textures and gravity gradients are present everywhere

Similarity to Renison Bell

- Renison Bell tile has many lookalikes in non-prospective areas
 - Tasmania basin, inc. Tamar graben
- Blue linear textures and gravity gradients are present everywhere
- Similarity map is poorly correlated with other Sn-W occurrences
- Next slide: West Coast

Summary & Conclusion

- Datarock.
- **Prospectivity modelling workflows often ignore** *texture* **in evidence layers**
- Computer vision algorithms are optimised for analysing texture
- Generic computer vision models can extract meaningful texture information from new, previously unseen imagery
 - Computationally cheap & highly scalable (eg: whole Australian continent)
 - Allows for textural similarity searching in an unbiased, or at least *consistently* biased way
- Have <u>not</u> found the next Renison Bell here
- Need to be conscious of limitations in the input data sets
 - Spatial resolution differences?
 - Depth sensitivity differences?
 - Overall appropriateness of data for the task?
 - Geology is king

Acknowledgements

- Mark Duffett for providing early access to Western Tiers aeromagnetic and radiometric data sets
- Geoscience Australia for onshore Isostatic Residual Bouguer Anomaly data
- Colleagues Mark Grujic, Harvey Nguyen & Dr. Yasin Dagasan for assistance with feature vector extraction code

Link to 2020 Sn-W Prospectivity Blogpost

