

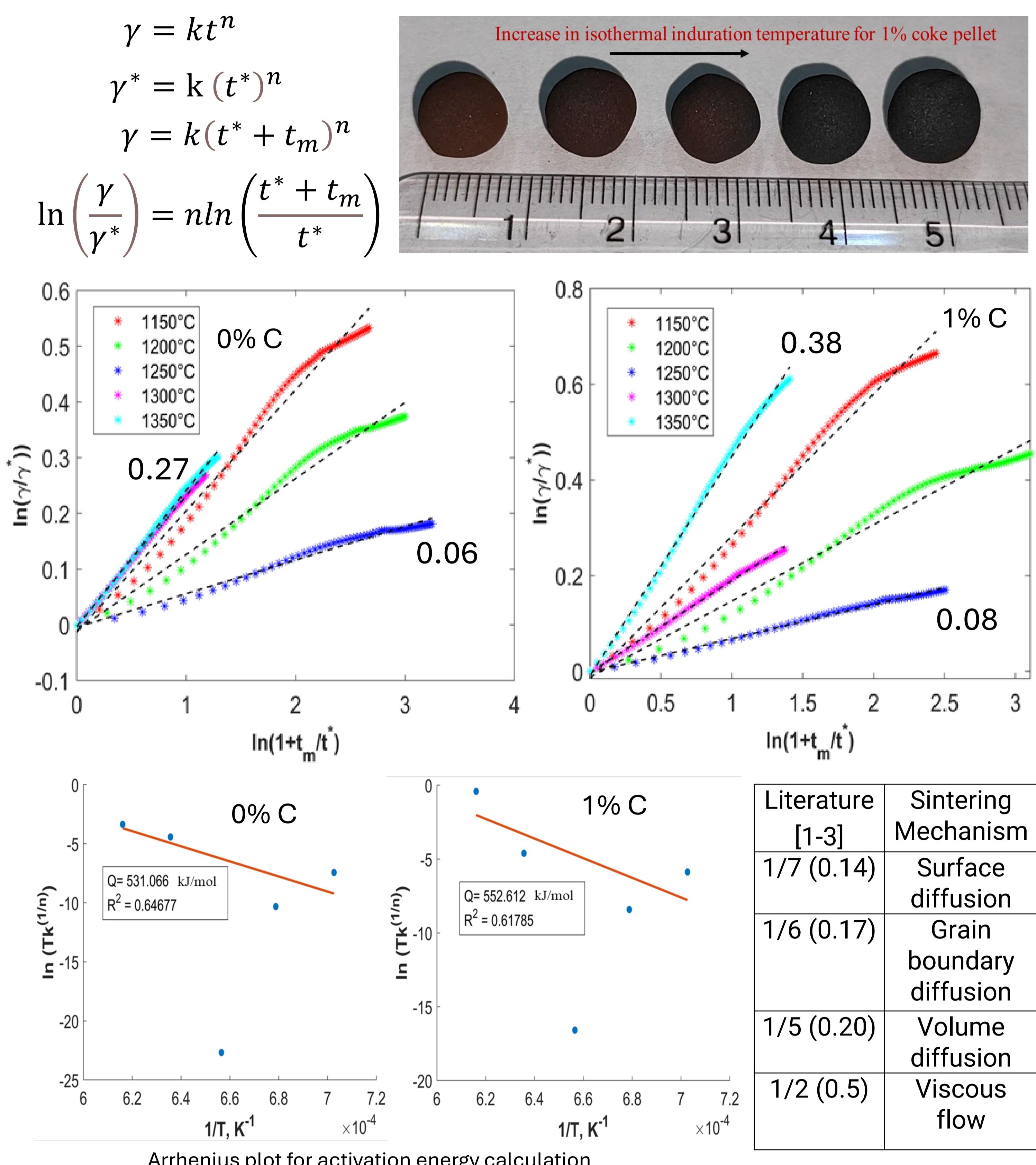
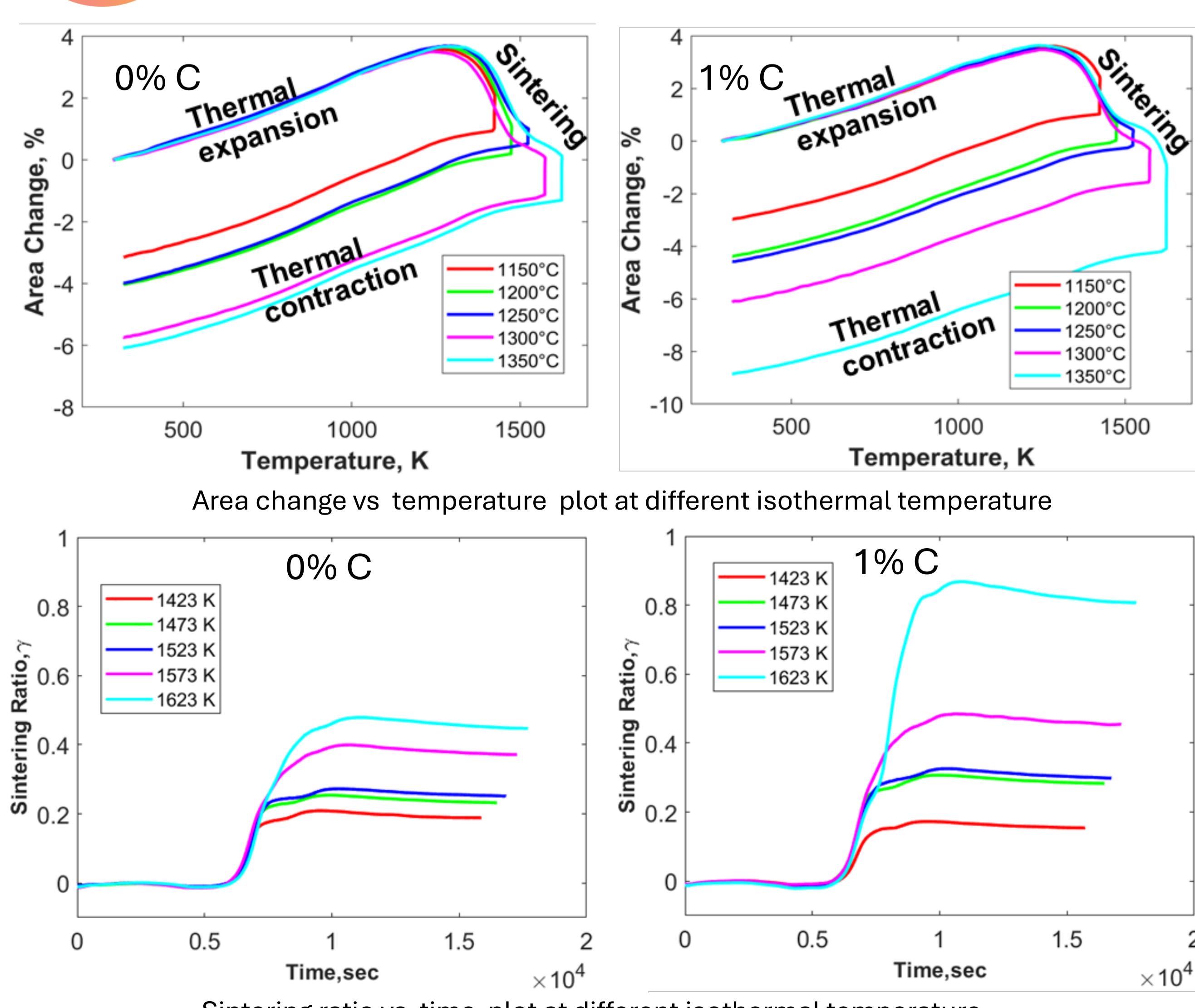
Effect of carbon on the sintering kinetics of a single hematite pellet

R. A. Anand¹, N. N. Viswanathan¹, M. M Pande¹

1. Department of Metallurgical Engineering and Materials Science
Indian Institute of Technology Bombay, Mumbai-400076, India.

1 INTRODUCTION

- Induration - green pellets are heated up-to 1350°C.
- During induration, pellets $\begin{cases} \text{physical change (sintering)} \\ \text{chemical change (oxidation/reduction)} \end{cases}$
- Sintering behaviour of magnetite pellet is different due to oxidation and non-stoichiometry at high temperatures.
- Carbon is added in the hematite pellet for internal heat generation but it brings a lot of simultaneous reactions associated with carbon burning.
- Need to understand the effect of carbon on material transportation during sintering.



2 METHODS

- The physical properties of the pellet (porosity & size) are chosen in a narrow range.
- Sintering experiments (optical dilatometer) $\begin{cases} 0\% \text{ coke} \\ 1\% \text{ coke}(0.85\% \text{ C}) \end{cases}$
- Sintering quantification $\gamma = \frac{\text{Sintering already achieved}}{\text{Sintering yet to be achieved}} = \frac{V_0 - V}{V - V_{\text{true}}}$
- Sintering ratio (γ) = $(\frac{-\delta_{A,\text{sintering}}}{\delta_{A,\text{true}} - \delta_{A,\text{sintering}}})$

Where, $\delta_{A,\text{true}} = \frac{2}{3} \left(\frac{\rho_0 - \rho_{\text{true}}}{\rho_{\text{true}}} \right) * 100$

Pellet	Sintering Temperature	Porosity		Heating Rate	Isothermal Hold Time
		0% Coke	1% coke		
HP0 (0% coke)	1423 (1150)	28.63	30.74	K/min (°C/min)	min
	1473(1200)	31.59	31.21		
HP1 (1% coke)	1523(1250)	29.56	29.07	10	20
	1573(1300)	31.05	30.54		
	1623(1350)	29.07	29.41		

3 RESULTS

4 DISCUSSION

An activation energies(AE) of 464 kJ/mol and 451 kJ/mol have been reported for oxidised magnetite pellet and magnetite pellets respectively. A high AE is attributed to the possibility of initial neck formation at bentonite/gangue minerals through reaction or solid-state diffusion [3-4]. Another possible mechanism for high AE, where the porosity is high and grain boundaries are low, the creation of point defect is too hard [5]. Considering the point defect model, an AE of 613kJ/mol is reported for iron diffusivity into interstitial [6].

5 CONCLUSION

- Power law equation can be used to study isothermal sintering kinetics.
- Sintering kinetics parameters, namely activation energy and time exponent 'n' is calculated. Depending upon these values kinetics mechanism can be assessed.
- The order of magnitude of AE is same for both compositions of pellet, although the amount of sintering achieved is more for 1% coke pellet.

REFERENCES

- German, R.M. 1996. Sintering theory and practice. New York: Wiley Interscience.
- Kuczynski, G.C. 1949. Study of the sintering of glass. *Journal of Applied Physics* 20(12), pp. 1160–1163.
- Sandeep Kumar, T.K., Viswanathan, N.N., Ahmed, H.M., Andersson, C. and Björkman, B. 2016. Estimation of Sintering Kinetics of Oxidized Magnetite Pellet using Optical Dilatometer. *Metallurgical and Materials Transactions B*, 46(2), pp. 635-643.
- Sandeep Kumar, T.K., Viswanathan, N.N., Ahmed, H.M., Andersson, C. and Björkman, B. 2016. Estimation of Sintering Kinetics of Magnetite Pellet Using Optical Dilatometer. *Metallurgical and Materials Transactions B*, 47(1), pp. 309–319.
- Bernard-Granger, G. and Guizard, C. 2007. Apparent activation energy for the densification of a commercially available granulated zirconia powder. *Journal of the American Ceramic Society* 90(4), pp. 1246–1250.
- Dieckmann, R. and Schmalzried, H., 1977. Defects and cation diffusion in magnetite (I). *Berichte der Bunsengesellschaft für physikalische Chemie*, 81(3), pp.344-347.