

Development of nitrogen prediction model for 320-tonne converter

C.M. Yoon¹, C.H. Eom¹, Y.D. Jeon¹, K.S. Kim¹
 1. Hyundai Steel Inc., South Korean

1 INTRODUCTION

Nitrogen(N) is widely known as would be controlled in various levels for different steel grades production. Specially, **ultra-low carbon(ULC)** steel requires **extremely low N level** in steelmaking.

However, it is **difficult to prevent N pick-up** from Atm. and raw Mats., because the N is one of the **interstitial elements** is easily absorbed into molten Fe.

Moreover, in the converter process which is **N removal is occurred by CO gas** formed during de-carburization, the demand to **reduce carbon emission(Carbon neutral)** would force an **unfavourable environment** for N control by reducing hot metal ratio (HMR) in the converter.

Thus, a **nitrogen prediction model(NPM)** has been developed based on **thermodynamic and kinetic approaches** using FactSageTM 8.3. In addition, in present study, it was tuned through simulation of key reactions combined with **time series data** in the converter.

2 MODEL DESCRIPTION

► Important variables of the NPM

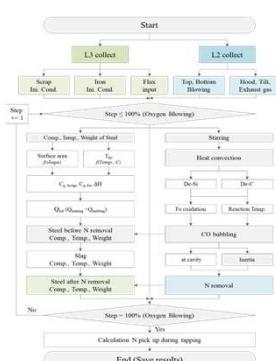
Source	Input				Removal
1 st Variable	Molten Iron	Solid Scrap	purity of gas	Leakage in hood	CO _(g) evolution
2 nd Variable	Temp., Comp., Time, ...	Length, Grade, Density, Comp., ...	Gas flow (O ₂ , Ar, N ₂ , ...) ...	Hood press., Comp. of outgases, ...	Flow rate, Stirring, DeC Rxn., Temp., Comp., ...

① Initial condition

- N content in Molten iron → [Thermodynamic Calc.](#)

② During oxygen blowing

- N pick-up: Scrap melting/impurity of gases/leakage


- N removal: Decarburization

→ [Converter Simulation](#): Real time Calc. of N content

③ Tapping

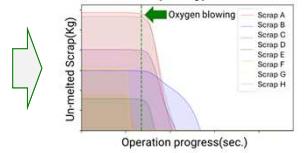
(N pick-up from atm.: Kinetic Calc.)

► Outline of the NPM

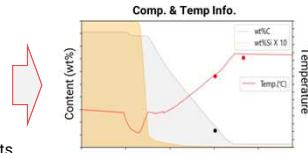


3 R&D(I. Converter simulator)

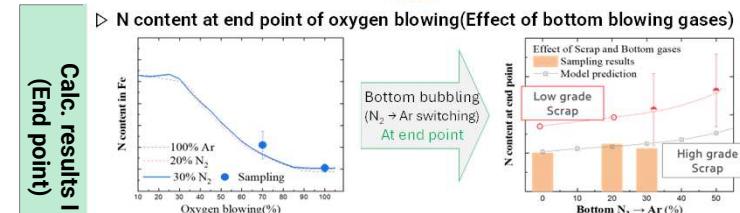
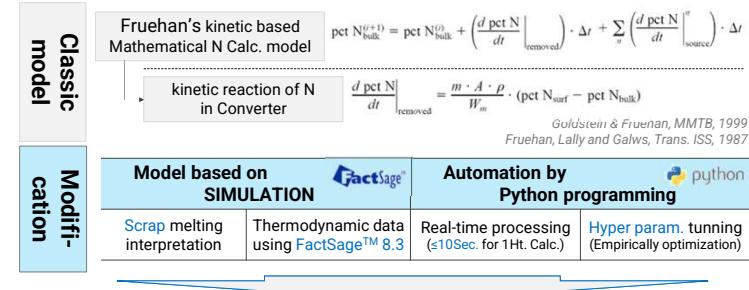
► Main modules for converter simulation


① Operation data load & pre-processing

- Load Lv.3(processed) & Lv.2(time series)
- Improve data readability for Python
- Convert to [thermodynamic & kinetic data](#)


② Scrap melting module

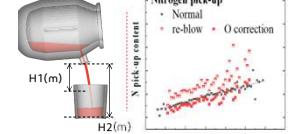
- Specification of each scrap (Specific length(L), apparent density(ρ), ...)
- Melt Calc. by [heat & mass transfer model](#)



③ Oxidation & Heat balance module

- Calc. the oxidation reaction at each stage (Stage order: Si(~15%) → C(~75%) → Fe(~100%)
- Calc. the temperature of molten Fe (Factors: Oxidation, Scrap, Slag making,...)
- **Verification:** comparison with operation results

4 R&D(II. N prediction)

► The nitrogen prediction model(NPM) for converter process

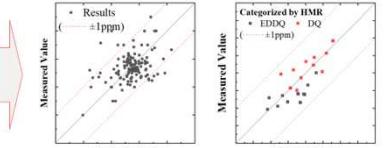

As is: Quantification of N content by %N₂ B.B. (N₂ B.B. after 50%: acceleration of N pick-up)

To be: Improvement of interpretation of [scrap melting](#) and [grade effects](#)

► Calc. N pick-up during tapping

N pick-up $A \left[\frac{P_{N2}}{100-MV_{N2}} \right] [k_{eq}] \left[(\%N_2)^2 - (\%Neq)^2 \right] \cdot t_{tapping}$

Jung and Ende, MMTB, 2020



To be: consider [tilt/tap hole](#) condition

► Effect of hot metal ratio(HMR) on N content

As is: Quantification of N by HMR(80~90%)

- Pred. vs. Meas. results with categorized by HMR

To be: Predict EAF-BF combined Proc. (HMR≤70%)

5 CONCLUSION

A **nitrogen prediction model(NPM)** for converter process has been developed based on thermodynamic and kinetic approaches combining with operational data. Since this NPM was modified based on the [converter simulation](#), it has various advantages in terms of versatility and expandability.

(1) It is possible to [predict removal and distribution for each component](#) by adding calculation module using python script.

(2) It can provide prediction results about N for [high-difficulty trial production such as EAF-BF combined Process\(HMR ≤ 70%\)](#).

In verification through comparison with about 18,000 production results, the accuracy of the NPM's nitrogen prediction was found to be [over 90% \(±1ppm\)](#).

REFERENCES

- [1] D.A. Goldstein and R.J. Fruehan: Metal. Mater. Trans. B, 1999, vol. 30B, pp945-956.
- [2] R.J. Fruehan and L.J. Martonik: Metal. Mater. Trans. B, 1980, vol. 11B, pp. 615
- [3] T. Kitamura, K. Miyamoto, R. Tsujino, S. Mizoguchi and K. Kato: ISIJ Int., 1996, vol. 36, pp. 395-401.
- [4] C.M. Yoon, C.H. Eom, Y.D. Jeon and K.S. Kim: 8th International Congress on the Science and Technology of Steelmaking(ICS), Montreal, 2022.
- [5] M.-A. van Ende, Y.-M. Kim, M.-K. Cho, J. Choi and I. -H. Jung: Metal. Mater. Trans. B, 2011, vol. 42B, pp. 477-489.
- [6] G. Wei, R. Zhu, T. Tang and K. Dong: Ironmaking & Steelmaking, 2019, vol. 46(7), pp. 609-619.
- [7] I.-H. Jung and M.-A. van Ende: Metal. Mater. Trans. B, 2020, vol. 51B, pp. 1851-1874.