


# INVESTIGATION OF THERMAL CONDUCTIVITY OF OXIDE SCALE OF HYDROGEN-REDUCED HOT COMPACTED IRON USING LIGHT FLASH ANALYSIS METHOD

Rijoo Kim<sup>1</sup>, Joonho Lee<sup>1</sup>

1. Department of Materials Science and Engineering, Korea University

## 1 INTRODUCTION



1. H<sub>2</sub>-DRI compacted into H<sub>2</sub>-HCl
2. H<sub>2</sub>-HCl being transported before hot-charging
3. H<sub>2</sub>-HCl hot-charged into the ESF (Electric Smelting Furnace)

Fig 1. POSCO HyREX process

The HyREX process comprises the fluidized bed reactor and the electric smelting furnace (ESF). When fine iron ore particles are reduced by hydrogen gas in the reactor, they are compacted into the hot compacted iron (H<sub>2</sub>-HCl). Estimating the H<sub>2</sub>-HCl temperature before hot-charging helps design optimal facilities for better energy efficiency. However, it can be oxidized before hot-charging of the H<sub>2</sub>-HCl into ESF. It should be noted that the temperature of the H<sub>2</sub>-HCl can be affected by the morphology and thickness of the oxide scale. There have been several previous research on the measurement of the oxide scale formed on steel products<sup>(1)~(3)</sup>. However, the measured values were all different and few research has been conducted on the measurements of the thermal properties of DRI. According to Göttfert, the thermal conductivity of H-DRI ranges from 1.2~3.6 W/mK and that of H-HBI 13~27 W/mK<sup>(4)</sup>. thermal properties are affected by the presence of gangue materials or porosity of the samples.

In this work, the thermal conductivity of the oxide scale of the H<sub>2</sub>-HCl manufactured by HyREX process was investigated using the light flash analysis method.

## 2 METHODS

### 1. Sample preparation



Table 1. The composition of H<sub>2</sub>-HCl (wt%)

| T.Fe | M.Fe | FeO  | SiO <sub>2</sub> | CaO   | Al <sub>2</sub> O <sub>3</sub> | MgO   |
|------|------|------|------------------|-------|--------------------------------|-------|
| 93.1 | 84.0 | 5.44 | 4.28             | 0.026 | 2.42                           | 0.078 |

Fig 3. H<sub>2</sub>-HCl sample

Hydrogen-reduced iron ore fines (particle size less than 5 mm) were compacted at 923 K with a pressure of 100 kg/cm<sup>2</sup> for 10 s. The samples were cut into 10 X 10 X 2.5 mm<sup>3</sup> and oxidized in 923 K for 15 min in air. The samples were polished to remove the oxide scale in the lower part of the H<sub>2</sub>-HCl samples. The thickness of the oxide scale was measured by SEM.

### 2. Light flash measurements (LFA)

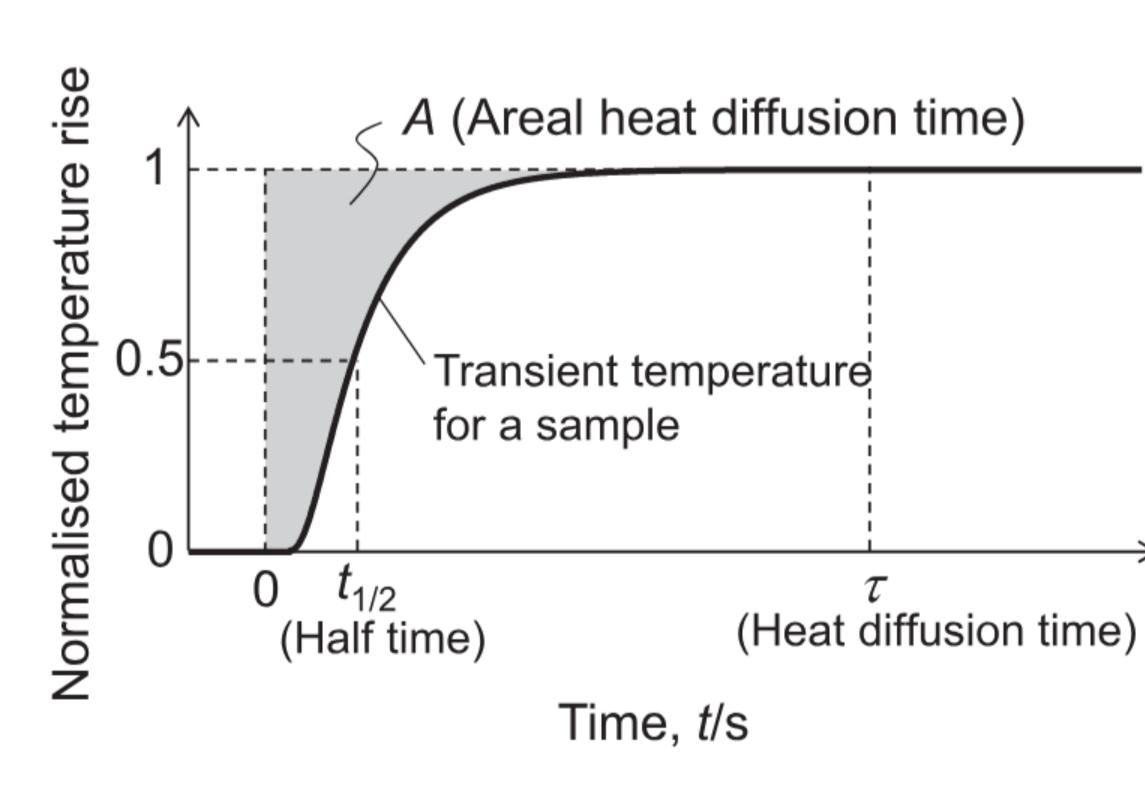
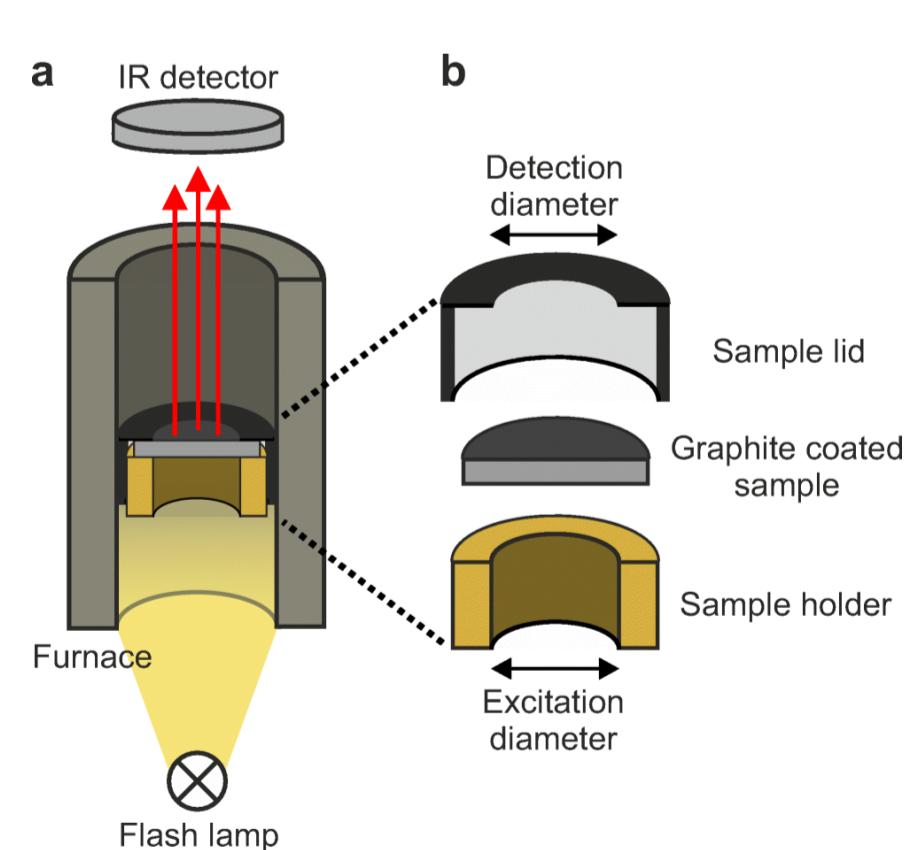




Fig 5. Schematic diagram of temperature change by LFA

The front surface is heated by a light pulse, and the resulting temperature change at the back surface is recorded by a thermometer. The temperature rise curve provides the value of the apparent heat diffusion time. The time when the temperature rises to the maximum is  $\tau$ , which is converted to apparent thermal diffusivity,  $D$ .

### 3. Microstructure analysis (SEM-EDX)

SEM analysis of the H<sub>2</sub>-HCl samples was conducted for the observation of the H<sub>2</sub>-HCl sample, oxide scale thickness measurement, and chemical analysis by Energy Dispersive X-ray Spectroscopy (EDS).

## ACKNOWLEDGEMENT

This work was supported by the Korea Planning & Evaluation Institute of Industrial Technology(KEIT) and the Ministry of Trade, Industry & Energy(MOTIE, Korea) of the Republic of Korea (No. RS-2023-00262421)

## 3 RESULTS

### 1. Microstructure analysis of the sample

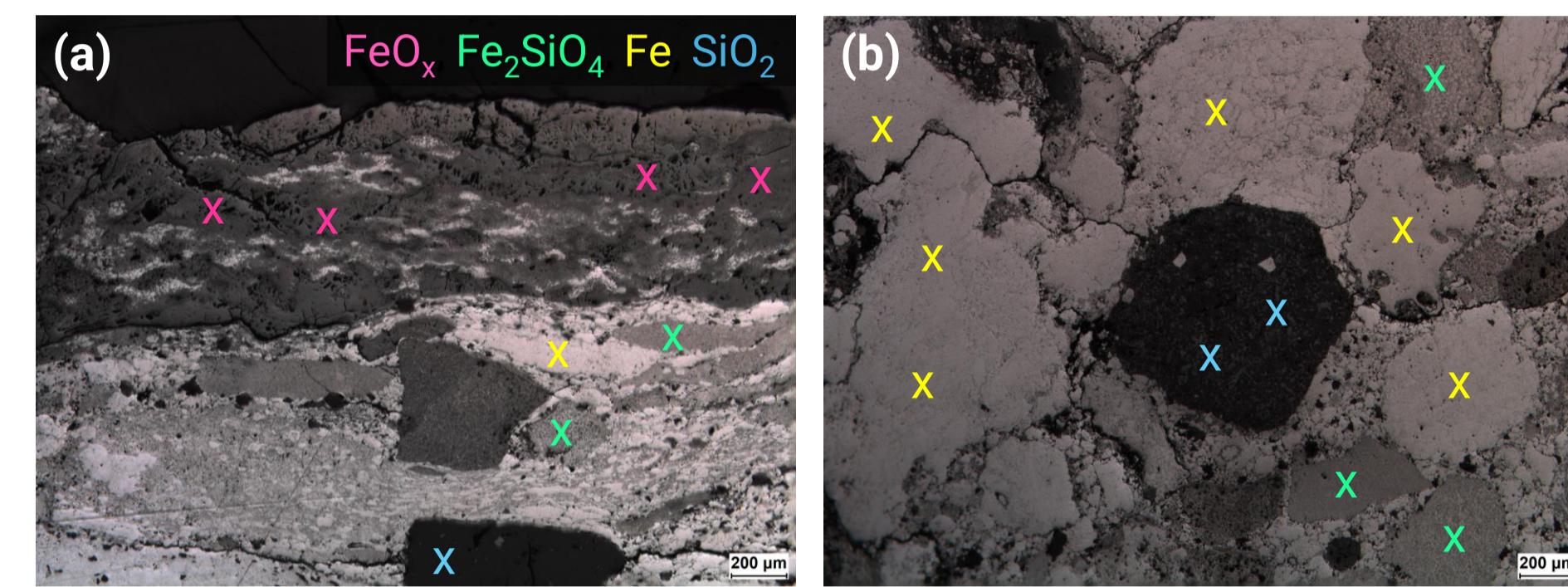
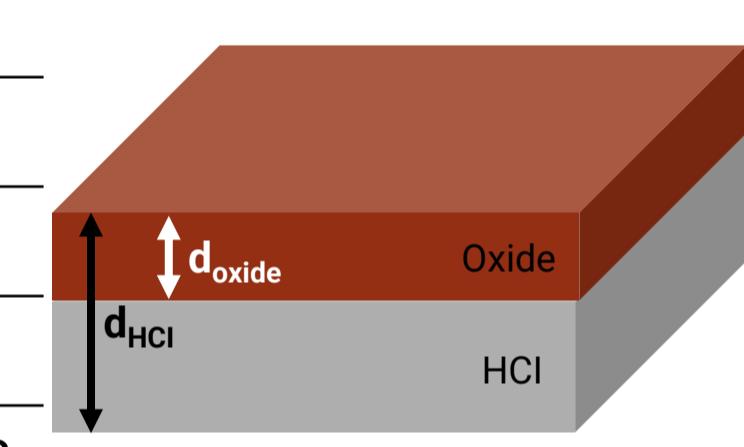



Fig 6. Cross-sectional image of re-oxidized H<sub>2</sub>-HCl;  
(a) Oxide scale formed on the surface of H<sub>2</sub>-HCl and  
(b) different types of particles inside H<sub>2</sub>-HCl


The average thickness of the oxide scale formed on the surface of the H<sub>2</sub>-HCl sample was 600  $\mu$ m. Other than the oxide scale (FeO<sub>x</sub>), there were many different phases such as metallic Fe, fayalite (Fe<sub>2</sub>SiO<sub>4</sub>), and SiO<sub>2</sub>.

### 2. Physical properties of H<sub>2</sub>-HCl samples

The properties of the H<sub>2</sub>-HCl with and without the oxide scale are shown in Table 2.

Table 2. The properties of unoxidized H<sub>2</sub>-HCl and partially oxidized H<sub>2</sub>-HCl at 973 K

| Property                           | Value                    | Property                               | Value                                   |
|------------------------------------|--------------------------|----------------------------------------|-----------------------------------------|
| $C_p$ <sub>HCl</sub> <sup>*</sup>  | 946 J/kgK                | $C_p$ <sub>oxide</sub> <sup>(1)</sup>  | 725 J/kgK                               |
| $\rho$ <sub>HCl</sub> <sup>*</sup> | 5433 kg/m <sup>3</sup>   | $\rho$ <sub>oxide</sub> <sup>(1)</sup> | 7750 kg/m <sup>3</sup>                  |
| $d_{HCl}$ <sup>*</sup>             | 2.458 mm                 | $d_{oxide}$ <sup>*</sup>               | 0.6 mm                                  |
| $D_{HCl}$ <sup>*</sup>             | 1.212 mm <sup>2</sup> /s | $D_{oxide}$ <sup>*</sup>               | $3.42 \times 10^{-7}$ m <sup>2</sup> /s |



\* The properties of unoxidized and partially oxidized H<sub>2</sub>-HCl are denoted by the subscript as 'HCl' and 'oxide'

\* Measured in present work

## 4 DISCUSSION

The thermal diffusivity of the oxide scale can be calculated by following equation.

$$A = \frac{(\Gamma_{HCl} + 3\Gamma_{oxide}) * \left(\frac{d_{HCl}^2}{D_{HCl}}\right) + (\Gamma_{oxide} + 3\Gamma_{HCl}) * \left(\frac{d_{oxide}^2}{D_{oxide}}\right)}{6(\Gamma_{HCl} - \Gamma_{oxide})} \quad \Gamma = C_p * \rho * d$$

$$\lambda_{oxide} = C_{poxide} * \rho_{oxide} * D_{oxide}$$

The thermal diffusivity and thermal conductivity of the H<sub>2</sub>-HCl were  $1.21 \times 10^{-6}$  m<sup>2</sup>/s and 6.23 W/mK, and those of the oxide scale on the surface of the H<sub>2</sub>-HCl sample were  $3.42 \times 10^{-7}$  m<sup>2</sup>/s and 1.92 W/mK.

| H2-HCl                          | Oxide scale           | 30% Fe <sub>3</sub> O <sub>4</sub> -70% FeO | 70% FeO                         | FeO                           | Fe <sub>1-x</sub> O             | H-DRI                          | H-HBI                          |
|---------------------------------|-----------------------|---------------------------------------------|---------------------------------|-------------------------------|---------------------------------|--------------------------------|--------------------------------|
| Present work                    | Present work          | Endo et al(2014) <sup>(1)</sup>             | Endo et al(2017) <sup>(2)</sup> | Li et al(2017) <sup>(2)</sup> | Endo et al(2020) <sup>(3)</sup> | Göttfert (2023) <sup>(4)</sup> | Göttfert (2023) <sup>(4)</sup> |
| Diffusivity [m <sup>2</sup> /s] | $1.21 \times 10^{-6}$ | $3.42 \times 10^{-7}$                       | $7.30 \times 10^{-6}$           | $4.75 \times 10^{-7}$         | $4.00 \times 10^{-7}$           | $9.00 \times 10^{-7}$          | $5.00 \times 10^{-6}$          |
| Conductivity [W/mK]             | 6.23                  | 1.92                                        | 3.8                             | 1.65                          | 1.6                             | 2.4                            | 20                             |

## 5 CONCLUSION

- The thermal diffusivity and conductivity of the H<sub>2</sub>-HCl was  $1.21 \times 10^{-6}$  m<sup>2</sup>/s and 6.23 W/mK which was larger than that of H-DRI<sup>(4)</sup> but smaller than that of H-HBI<sup>(4)</sup>.
- The thermal conductivity of the oxide scale was 1.92 W/mK, which was 49% smaller than that of the 30% Fe<sub>3</sub>O<sub>4</sub>-70% FeO scale<sup>(1)</sup>.
- Larger thermal conductivity of H<sub>2</sub>-HCl means faster cooling while transported, but it is also possible to enhance heating properties after hot-charging in the ESF.
- Future works will be done on the simulation of the temperature change of the HCl on transportation.

## REFERENCES

1. Endo et al. ISIJ International 54.9 (2014): 2084-2088.
2. Li et al. ISIJ International 57.12 (2017): 2097-2106.
3. Zheng et al. Journal of Nuclear Materials 507 (2018): 327-338.
4. Felix Göttfert, Theoretical Considerations and Experimental Observations on Heat Transfer in Hydrogen Direct Reduced Iron, 2023.