Physical quantity	Name of unit	Value	Symbol
length	metre	base unit	m
	millimetre	0.001 m	mm
	centimetre	0.01 m	cm
	kilometre	1000 m	km
	international nautical mile (for navigation)	1852 m	n mile
mass (commonly called 'weight')	kilogram	base unit	kg
		$(1000 \mathrm{~g})$	
	gram	0.001 kg	g
	tonne	1000 kg	t
time interval	second	base unit	s
	minute	60 s	min
	hour	60 min	h
	day	24 h	d
area	square metre	SI unit	m^{2}
	square millimetre	$0.000001 \mathrm{~m}^{2}$	mm^{2}
	square centimetre	$0.0001 \mathrm{~m}^{2}$	cm^{2}
	hectare	$10000 \mathrm{~m}^{2}$	ha
volume	cubic metre	SI unit	m^{3}
	cubic millimetre	$10^{-9} \mathrm{~m}^{3}$	mm^{3}
	cubic centimetre	$0.000001 \mathrm{~m}^{3}$	cm^{3}
	cubic decimetre	$0.001 \mathrm{~m}^{3}$	dm^{3}
volume (for fluids only)	litre ${ }^{\text {§ }}$	$0.001 \mathrm{~m}^{3}$	L
	millilitre	0.001 L	mL
	kilolitre	$1000 \mathrm{~L}\left(1 \mathrm{~m}^{3}\right)$	kL
velocity and speed	metre per second	SI unit L	m / s or $\mathrm{m} \mathrm{s}^{-1}$
	kilometre per hour	$0.27 \mathrm{~m} / \mathrm{s}$	km / h or $\mathrm{km} \mathrm{h}^{-1}$
	knot (for navigation)	1 n mile/h or	kn
		$0.514 \mathrm{~m} / \mathrm{s}$	
force	newton*	SI unit	N
energy	joule*	SI unit	J
power	watt*	SI unit	W
density	kilogram per cubic metre	SI unit	$\mathrm{kg} / \mathrm{m}^{3} \text { or } \mathrm{kg} \mathrm{~m}^{-3}$
	tonne per cubic metre gram per cubic centimetre	$1000 \mathrm{~kg} / \mathrm{m}^{3}$ $1000 \mathrm{~kg} / \mathrm{m}^{3}$	$\begin{aligned} & \mathrm{t} / \mathrm{m}^{3} \text { or } \mathrm{tm}^{-3} \\ & \mathrm{~g} / \mathrm{cm}^{3} \text { or } \mathrm{g} \mathrm{~cm}^{-3} \end{aligned}$
density (for fluids only)	kilogram per litre	$1000 \mathrm{~kg} / \mathrm{m}^{3}$	kg / L or kgL^{-1}
	gram per millilitre	$1000 \mathrm{~kg} / \mathrm{m}^{3}$	$\mathrm{g} / \mathrm{mL}^{\text {or } \mathrm{g} \mathrm{mL}}{ }^{-1}$
pressure	pascal	SI unit ($\mathrm{N} / \mathrm{m}^{2}$)	Pa
pressure (for meteorology)	bar	100000 Pa	b
	millibar	100 Pa	mb
electric current	ampere \dagger	base unit	A
potential difference or electromotive force	volt*, \dagger	SI unit	V
electrical resistance	ohm* \dagger	SI unit	
frequency	hertz*	SI unit	Hz
	revolution per minute	$\frac{1}{60} \mathrm{~Hz}$	rpm or rev/min
temperature	kelvin	base unit	K
	degree Celsius ${ }^{\ddagger}$	K	${ }^{\circ} \mathrm{C}$
plane angle	radian	SI unit	rad
	milliradian	0.001 rad	mrad

Physical quantity	Nmne of unit	Value	Symbol
	degree	$\pi / 180 \mathrm{rad}$	\circ
	minute	$\frac{1^{\circ}}{60}$	\prime
		$\frac{1^{\prime}}{6}$	$\prime \prime$
amount of substance	second	mole	base unit

* Decimal multiples commonly associated with this unit are kilo $(\times 1000)$, mega $(\times 1000000)$ and giga ($\times 1000000000)$.
\dagger Decimal submultiples commonly associated with this unit are milli ($\times 0.001$) and micro ($\times 0.000001$).
$\ddagger \quad$ The units of temperature on the Celsius scale $\left({ }^{\circ} \mathrm{C}\right)$ and the thermodynamic scale (K) are equal. A temperature t on the Celsius scale is related to a temperature T on the thermodynamic scale by the relationship $\mathrm{t}=\mathrm{T}-273.15$.
§ For use of symbol L see Australian Standard 1000-1979.

1. From Metric Conversion Board, 1971. Metric Conversion for Australia, pp 15 and 16 (Australian Government Publishing Service: Canberra), by permission.

RECOMMENDED PRACTICE FOR METRIC CONVERSION

UNITS

Precision

Conversion factors have in general been given to seven significant figures, a lesser number of significant figures implying an exact conversion factor. The number of figures used should relate to the required precision.

Care is required when converting any imperial measurements that too much precision is not introduced or implied. Refer to MCB publication Metric Practice.

$$
\begin{array}{ll}
\text { eg } 94 \mathrm{ft} & =28.7 \mathrm{~m} \\
\text { NOT } & =28.6512 \mathrm{~m}
\end{array}
$$

Surveying

Distance

All measurements between survey stations should be recorded in metres (m) to three decimal places.

$$
\begin{array}{ll}
1 \mathrm{ft} & =0.3048 \mathrm{~m} \\
1 \mathrm{yd} & =0.9144 \mathrm{~m} \\
1 \text { mile } & =1609.344 \mathrm{~m}
\end{array}
$$

Measurements of rock excavations should be to the nearest 0.1 metre.

Area

Lease areas will be expressed in hectares (ha) or square kilometres $\left(\mathrm{km}^{2}\right)$.

$$
\begin{array}{ll}
10000 \mathrm{~m}^{2} & =1 \mathrm{ha} \\
100 \mathrm{ha} & =1 \mathrm{~km}^{2}
\end{array}
$$

Smaller areas will be expressed in square metres $\left(\mathrm{m}^{2}\right)$.

$$
\begin{array}{ll}
1 \mathrm{ft}^{2} & =0.09290304 \mathrm{~m}^{2} \\
1 \mathrm{yd}^{2} & =0.8361274 \mathrm{~m}^{2} \\
1 \mathrm{ac} & =0.4046856 \mathrm{ha} \\
1 \text { square mile } & =2.589988 \mathrm{~km}^{2} \\
1 \text { rood } & =1011.714 \mathrm{~m}^{2} \\
1 \text { perch } & =25.29285 \mathrm{~m}^{2}
\end{array}
$$

Volume

Most usual unit will be cubic metres $\left(\mathrm{m}^{3}\right)$ although litres (L) may be used for fluid measurement.

$$
\begin{array}{ll}
1 \mathrm{ft}^{3} & =0.02831685 \mathrm{~m}^{3} \\
1 \mathrm{yd}^{2} & =0.76455449 \mathrm{~m}^{3} \\
1000 \text { litres } & =1 \mathrm{~m}^{3}
\end{array}
$$

Note: Two symbols for litre (L and 1) are legally prescribed in regulations under the Commonwealth Weights and Measures (National Standards) Act. However, the Metric Conversion Board recommends L as the preferred symbol. It is the only officially recommended symbol in USA and is preferred in Canada. It is also being used increasingly in other countries (from AS 1000-1979).

Angles

No change is involved.
Angles will continue to be recorded in degrees, minutes and seconds.

Levelling

Four and five metre staffs are available graduated at metre (m) and 10 millimetre (mm) intervals.

Note: Estimate millimetres
Graduated facings can be obtained.

Mine datum

At all new mining developments the reduced level should be started in terms of a datum which is 10000 metres (m) below the Australian Height Datum determined by National Mapping.

Contours-select from range $0.5 \mathrm{~m}, 1.0 \mathrm{~m}, 2.0 \mathrm{~m}$, 5.0 m depending on degree of detail.

Density

Density is expressed as tonnes per cubic metre $\left(\mathrm{t} / \mathrm{m}^{3}\right.$) or kilograms per cubic metre $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$.

Note: The term specific gravity should be phased out (Refer AS 1376-1973)

Mine plans

For mine planing, recommended scales are specified in Australian Standard AS 1100.7.

Co-ordinate grid lines 100 or 200 millimetres (mm) apart are recommended.

Grid lines at these spacing suit the recommended scales by giving suitably rounded numbers for major co-ordinate lines and are not so far apart that major scale errors are introduced due to paper shrinkage.

Sampling

Precious metal grades (gold, silver)

Express in grams per tonne (g/t).
Note 1: This is numerically equal to parts per million.
It is recommended that grades be converted now in grams per tonne, with a conversion of mass back to ounces troy being made prior to sale. If grades are converted to ounces per tonne, a later conversion would undoubtedly be necessary to grams per tonne. The consequent confusion of two conversions is to be avoided.

Note 2: Until London Bullion Market changes to SI units, gold and silver bullion will be marketed in ounce troy.

Uranium grade

Express in kilograms per tonne (kg/t).
Note 3: This is numerically equal to parts per 1000 .

Grade of diamonds and other gem deposits

Express as metric carats per cubic metre ($\mathrm{CM} / \mathrm{m}^{3}$).

Note 4: The General Conference on Weights and Measures has deprecated the use of the metric carat. However its use still prevails in international gem trade. It is hoped that the trade will ultimately adopt the gram in place of the metric carat.
$1 \mathrm{CM}=0.2 \mathrm{~g}$.
1 carat $(1877)=1.028 \mathrm{CM}$
At this stage, in New South Wales, Victoria, Queensland, and Tasmania, diamonds and other precious stones may only be sold by reference to the metric carat.

Alluvial deposits

Alluvial deposits at present expressed in terms of pounds, ounces, pennyweights or grams per cubic yard will be expressed as grams per cubic metre $\left(\mathrm{g} / \mathrm{m}^{3}\right)$.

Ore grades

Grades of some ore eg tungstic oxide, antimony ore, manganese ore, beryllium ore, have been expressed as a percentage of a ton (a ton of material at one per cent). These will be expressed as a percentage of a tonne (t).

All other grades will continue to be expressed as percentages.

Specific energy for coal

Express as megajoules per kilogram (MJ/kg).

Relevant conversion factors

Mass (precious metals)

1 dwt	$=1.555174 \mathrm{~g}$
1 oz tr	$=31.10348 \mathrm{~g}$
Mass (ore, etc)	
1 ton	$=1.016047 \mathrm{t}$
1 sh tn	$=0.9071847 \mathrm{t}$
Grade	
$1 \mathrm{dwt} / \mathrm{sh}$ tn	$=1.714286 \mathrm{~g} / \mathrm{t}$
$1 \mathrm{dwt} /$ ton	$=1.530612 \mathrm{~g} / \mathrm{t}$
$1 \mathrm{oz} \mathrm{tr} / \mathrm{ton}$	$=30.61224 \mathrm{~g} / \mathrm{t}$
$1 \mathrm{oz} \mathrm{tr} / \mathrm{sh} \mathrm{tn}$	$=34.28571 \mathrm{~g} / \mathrm{t}$
$1 \mathrm{lb} /$ ton	$=0.4464286 \mathrm{~kg} / \mathrm{t}$
$1 \mathrm{lb} / \mathrm{yd}^{3}$	$=593.2763 \mathrm{~g} / \mathrm{m}^{3}$
1 oz (avoirdupois) $/ \mathrm{yd}^{3}=37.07978 \mathrm{~g} / \mathrm{m}^{3}$	
$1 \mathrm{dwt} / \mathrm{yd}^{3}$	$=2.034906 \mathrm{~g} / \mathrm{m}^{3}$
$1 \mathrm{gr} / \mathrm{yd}^{3}$	$=0.08475378 \mathrm{~g} / \mathrm{m}^{3}$
Specific energy	
1 Btu/lb	$=0.002326 \mathrm{MJ} / \mathrm{kg}$

Mine ventilation

Velocity of air

Use metres per second (m / s).
$1 \mathrm{ft} / \mathrm{min}=0.00508 \mathrm{~m} / \mathrm{s}$
Useful rule of thumb:
$200 \mathrm{ft} / \mathrm{min}=1 \mathrm{~m} / \mathrm{s}$

Flow of air

Use cubic metres per second ($\mathrm{m}^{3} / \mathrm{s}$).
$1 \mathrm{ft}^{3} / \mathrm{min}=0.0004719474 \mathrm{~m}^{3} / \mathrm{s}$
Note: Useful rule of thumb for conversion: $2000 \mathrm{ft}^{3} / \mathrm{min}=1 \mathrm{~m}^{3} / \mathrm{s}$

Density

Use kilograms per cubic metre $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$, tonnes per cubic metre $\left(\mathrm{t} / \mathrm{m}^{3}\right)$.

$$
1 \mathrm{lb} / \mathrm{ft}^{3}=16.01846 \mathrm{~kg} / \mathrm{m}^{3}
$$

Note: Correct for temperature and pressure
Density air (dry) =

$$
\left(1.205 \times \frac{\text { pressure }(\mathrm{kPa})}{101.325} \frac{293.15}{\operatorname{temp}(\mathrm{~K})}\right) \mathrm{kg} / \mathrm{m}^{3}
$$

Density air (dry) at $20^{\circ} \mathrm{C}$ and $101.325 \mathrm{kPa}=$ $1.205 \mathrm{~kg} / \mathrm{m}^{3}$.
Density moist air (50 per cent r.h.) at $20^{\circ} \mathrm{C}$ and $101.325 \mathrm{kPa}=1.184 \mathrm{~kg} / \mathrm{m}^{3}$.

Temperature

Use degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$. Record to one decimal point.
For thermodynamic calculations use kelvin (K).

$$
\mathrm{K}={ }^{\circ} \mathrm{C}+273.15
$$

Pressure units

Use pascals (Pa), kilopascals (kPa) or megapascals (MPa). Reference will be found to the millibar in UK practice. The pascal is the SI unit of pressure and its use in Australia is recommended. The millibar (mb) is retained for meteorological use only.
$1 \mathrm{inH}_{2} \mathrm{O}$ at $20^{\circ} \mathrm{C}$ and
$9.80665 \mathrm{~m} / \mathrm{s}^{2}=0.2486416 \mathrm{kPa}$
1 inHg at $0^{\circ} \mathrm{C}$ and

$$
9.80665 \mathrm{~m} / \mathrm{s}^{2}=3.386384 \mathrm{kPa}
$$

1 mmHg at $0^{\circ} \mathrm{C}$ and
$9.80665 \mathrm{~m} / \mathrm{s}^{2}=0.1333222 \mathrm{kPa}$
$1 \mathrm{mmH}_{2} \mathrm{O}$ at $20^{\circ} \mathrm{C}$ and $9.80665 \mathrm{~m} / \mathrm{s}^{2}=9.789039 \mathrm{~Pa}$
$1 \mathrm{lbf} / \mathrm{in}^{2}=6.894757 \mathrm{kPa}$

Notes

I. Gauge and absolute pressure

The distinction between gauge and absolute pressure should be made clear by following the convention that unless otherwise stated pressures refer to gauge pressures: if an absolute pressure is intended it must be specified eg an absolute pressure of 4.2 kPa .

2. Conversion of columns of liquids

All factors relating columns of liquids to pascals are dependent on fluid density, the local value of ' g ' and temperature. Factors given are for the conditions as nominated in Australian Standard 1376-1973.

Differential pressure

Fluids in glass manometers are commonly used to measure pressure differences. Results should be expressed in pascals.

$$
\text { Where } \begin{aligned}
\mathrm{p} & =\mathrm{h} \times \rho \times \mathrm{g}_{\mathrm{n}} \\
\mathrm{p} & =\operatorname{differential~pressure~}(\mathrm{Pa}) \\
\mathrm{h} & =\text { manometer reading }(\mathrm{m}) \\
\rho & =\text { fluid density }\left(\mathrm{kg} / \mathrm{m}^{3}\right) \\
\mathrm{g}_{\mathrm{n}} & =\text { acceleration due to gravity } \\
& =9.80665 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Velocity pressure

Use pascals (Pa)
Where $P_{v}=1 / 2 \mathrm{Cv}^{2} \rho$
$\mathrm{P}_{\mathrm{v}}=$ measured velocity pressure (Pa)
$\mathrm{C}=$ dimensionless coefficient for the pitot-static tube (normally close to unity)
$\mathrm{v}=$ air velocity $(\mathrm{m} / \mathrm{s})$
$\mathrm{p}=\operatorname{air}$ density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
Airway resistance (Formula and ' K ' factors) Based on Chezy Darcy and Atkinson's relationships.

Expressed in pascals (Pa)

$$
\begin{aligned}
P & =\frac{f \rho}{2} \frac{C L Q}{}{ }^{2} \\
A^{3} & \left(=\frac{f \rho}{2} \frac{\left.{S v^{2}}_{A}^{A}\right)}{A^{3}}\right. \\
& =P Q^{2} \\
' K^{\prime} & =\frac{f \rho}{2} \\
'^{\prime} R^{\prime} & =\frac{K C L}{A^{3}}\left(=\frac{P}{Q^{2}}\right)
\end{aligned}
$$

where $\mathrm{P}=$ frictional pressure loss (Pa)
$\mathrm{f}=$ dimensionless coefficient
$\rho=$ air density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\mathrm{C}=$ airway circumference (m)
$\mathrm{L}=$ length of airway (m)
$\mathrm{A}=$ cross-section area of airway $\left(\mathrm{m}^{2}\right)$
$S=$ rubbing surface area $C \times L\left(\mathrm{~m}^{2}\right)$
$\mathrm{V}=$ airflow velocity (m / s)
$\mathrm{Q}=$ airflow quantity $\left(\mathrm{m}^{3} / \mathrm{s}\right)$
' K ' = friction factor $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
' R ' = resistance $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$

Note (1)

The ' K ' - and ' R '-factors include a density term. For general understanding and communication their values will be quoted for air at standard density (' K_{S} '). For other conditions the correct values can be obtained thus-

$$
\begin{aligned}
& ' \mathrm{~K} \text { ' }='_{\mathrm{S}} \text { ' } \times \frac{\rho}{1.205} \\
& '^{\prime}{ }^{\prime}={ }^{\prime} \mathrm{R}_{\mathrm{S}} \text { ' } \times \frac{\rho}{1.205}
\end{aligned}
$$

Both South Africa and Great Britain are using ' K ' and ' R ' as above. The metric unit for ' K ' is $\mathrm{kg} / \mathrm{m}^{3}$. The imperial unit for ' K ' is $\mathrm{lbf} \cdot \mathrm{min}^{2} / \mathrm{ft}^{4}$.
' K ' metric $=1.855364 \times$ ' K ' imperial at standard gravity.
Note (2)
' K ' imperial relates to volume flow in thousands of cubic feet per minute.
' K ' metric relates to volume flow in cubic metres per second.

Refrigeration

Use watts (W) or multiples
1 ton $($ refrigeration $)=12000 \mathrm{Btu} / \mathrm{h}$

$$
=3.516853 \mathrm{~kW}
$$

Compressed Air

Volume flow-compressor capacity

Express as cubic metres per second $\left(\mathrm{m}^{3} / \mathrm{s}\right)$, litres per second (L/s).

Useful rules of thumb:
$2000 \mathrm{ft}^{3} / \mathrm{min}=1 \mathrm{~m}^{3} / \mathrm{s}$
$2 \mathrm{ft}^{3} / \mathrm{min}=1 \mathrm{~L} / \mathrm{s}$
ie A $30000 \mathrm{ft}^{3} / \mathrm{min}$ compressor will be known as a $15 \mathrm{~m}^{3} / \mathrm{s}$ compressor.
A $100 \mathrm{ft}^{3} / \mathrm{min}$ compressor will be known as a $50 \mathrm{~L} / \mathrm{s}$ compressor.

Mass flow

Expressed as kilograms per second (kg/s), grams per second (g/s).

$$
\begin{array}{ll}
1 \mathrm{lb} / \mathrm{s} & =0.4535924 \mathrm{~kg} / \mathrm{s} \\
1 \mathrm{lb} / \mathrm{min} & =7.559873 \mathrm{~g} / \mathrm{s}
\end{array}
$$

Velocity

Express as metres per second (m / s)
$1 \mathrm{ft} / \mathrm{min}=0.00508 \mathrm{~m} / \mathrm{s}$

Pressure

Express as kilopascals (kPa) .
Useful rules of thumb:
$100 \mathrm{lbf} / \mathrm{in}^{2}=700 \mathrm{kPa}$
$1 \mathrm{inH}_{2} \mathrm{O}=0.25 \mathrm{kPa}$
$1 \mathrm{inHg} \quad=3.5 \mathrm{kPa}$
For marking of pressure gauges refer to Australian Standard 1349-1973.

Rockdrill penetration speed

Expressed in millimetres per minute ($\mathrm{mm} / \mathrm{min}$) to nearest ten millimetres. For high penetration rates in very soft rock express as metres per minute ($\mathrm{m} / \mathrm{min}$) to nearest 0.1 metre.

Useful rule of thumb:
$1 \mathrm{ft} / \mathrm{min}=300 \mathrm{~mm} / \mathrm{min}$.

Pipe diameter and wall thickness

Express in millimetres (mm).
Note: Rounded nominal dimensions are used to describe pipe; ie six inch diameter becomes 150 mm pipe.

Pressure loss (frictional)

Express as kilopascals per kilometre ($\mathrm{kPa} / \mathrm{km}$), pascals per metre $(\mathrm{Pa} / \mathrm{m})$.

Relevant conversion factors

Volume flow
$1 \mathrm{ft}^{3} / \mathrm{min}=0.0004719474 \mathrm{~m}^{3} / \mathrm{s}$ $=0.4719474 \mathrm{~L} / \mathrm{s}$
Mass flow
$1 \mathrm{lb} / \mathrm{min}=7.559873 \mathrm{~g} / \mathrm{s}$
$1 \mathrm{lb} / \mathrm{s} 0.4535924 \mathrm{~kg} / \mathrm{s}$
Velocity
$1 \mathrm{ft} / \mathrm{min}=0.00508 \mathrm{~m} / \mathrm{s}$
Pressure
$1 \mathrm{lbf} / \mathrm{in}^{2}=6.894757 \mathrm{kPa}$
$\begin{aligned} 1 \mathrm{inH}_{2} \mathrm{O}= & 248.6416 \mathrm{~Pa} \text { at } 20^{\circ} \mathrm{C} \text { and } \\ & 9.80665 \mathrm{~m} / \mathrm{s}^{2} \\ 1 \mathrm{inHg}= & 3.386384 \mathrm{kPa} \text { at } 0^{\circ} \mathrm{C} \text { and } \\ & 9.80665 \mathrm{~m} / \mathrm{s}^{2}\end{aligned}$
Rockdrill penetration rate
$1 \mathrm{ft} / \mathrm{min}=304.8 \mathrm{~mm} / \mathrm{min}$
Pressure loss
$1 \mathrm{lbf} / \mathrm{in}^{2} .1000 \mathrm{ft}=22.62059 \mathrm{~Pa} / \mathrm{m}$

Water supply and pumping

Quantity of water

Express in terms of litres (L), kilolitres (kL), megalitres (ML) or cubic metres.

$$
\begin{aligned}
1 \text { ac. } \mathrm{ft} & =1233.482 \mathrm{~m}^{3} \\
& \text { or } 1.233482 \mathrm{ML}
\end{aligned}
$$

Volume flow

(i) Pumping rates previously expressed as gallons per minute to be expressed as litres per second (L/s).

Useful rule of thumb:
$100 \mathrm{gal} / \mathrm{min}=7.5 \mathrm{~L} / \mathrm{s}$
(ii) Daily water supply to towns or plants previously expressed in gallons to be expressed in megalitres.

Useful rule of thumb:
$1 \times 10^{6} \mathrm{gal}=4.5 \mathrm{ML}$

Head

While the SI unit of pressure is the pascal, it may be necessary in certain circumstances to talk in terms of head of liquid.

Useful rule of thumb:
$1 \mathrm{mH}_{2} \mathrm{O}=10 \mathrm{kPa}$

Pump power

Express in/kilowatts (kW)

Relevant conversion factors

Quantity of water
1 gal $\quad=4.54609$ litres
1 US gal $=3.785412$ litres
Flow
$1 \mathrm{gal} / \mathrm{min}=0.07576817 \mathrm{~L} / \mathrm{s}$
Power
$1 \mathrm{hp} \quad=0.7456999 \mathrm{~kW}$

Pumping solids (pulp flow)

Diameter of pipe

Describe in millimetres (mm)

Note: Express in metres (m) in calculations.

Diameter of solid particles

Describe in millimetres (mm), micrometres ($\mu \mathrm{m}$)
Note 1: Express in metres (m) in calculations.
Note 2: The term 'micron' should no longer be used as a synonym for 'micrometre'.

Force or resistance

Express as newtons (N).
$1 \mathrm{lbf}=4.448222 \mathrm{~N}$ at standard gravity.

Pressure, head of liquid or slurry

Express as pascals (Pa), kilopascals (kPa).
$1 \mathrm{~mm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\left(20^{\circ} \mathrm{C}\right.$ and $\left.9.80665 \mathrm{~m} / \mathrm{s}^{2}\right)$
$=9.789039 \mathrm{~Pa}$.

Hydraulic gradient

Express as kilopascals per metre $(\mathrm{kPa} / \mathrm{m})$ of pipe.

Flow rate

Describe in litres per second (L/s) but use cubic metres per second ($\mathrm{m}^{3} / \mathrm{s}$) in calculations.

Velocity of flow or settling velocity

Express in metres per second (m/s).

Density

Express as tonnes per cubic metre ($\mathrm{t} / \mathrm{m}^{3}$) or kilograms per litre (kg / L).

Note 1: The term 'specific gravity' should be phased out (Refer AS 1376-1973).
Note 2: $1 \mathrm{t} / \mathrm{m}^{3}=1 \mathrm{~kg} / \mathrm{L}$

Viscosity

(i) Dynamic viscosity. Express as pascal second (Pa.s), millipascal second (mPa.s).
Note: It is expected that the poise (P) will be used by certain industries for some time, although this practice should be phased out as soon as possible.

$$
\begin{array}{ll}
1 \mathrm{P} & =0.1 \mathrm{~Pa} . \mathrm{s} \\
1 \mathrm{cP} & =1 \mathrm{mPa} . \mathrm{s}
\end{array}
$$

(ii) Kinematic viscosity. Express as square metres per second ($\mathrm{m}^{2} / \mathrm{s}$) or square millimetres per second ($\mathrm{mm}^{2} / \mathrm{s}$).
Note: It is expected that the usages of stokes (St) could continue for some time in certain circumstances although this should also be phased out as soon as possible.

$$
\begin{aligned}
1 \mathrm{St} & =100 \mathrm{~mm}^{2} / \mathrm{s} \\
1 \mathrm{cSt} & =1 \mathrm{~mm}^{2} / \mathrm{s}
\end{aligned}
$$

Power

Express as kilowatts (kW), megawatts (MW) and gigawatts (GW).

Metallurgical

Concentration

Reagent consumption is to be expressed in kilograms per tonne or grams per tonne ($\mathrm{kg} / \mathrm{t}, \mathrm{g} / \mathrm{t}$).

Smelting

(i) Metal loss in slag is to be expressed as kilograms per tonne (kg/t).
(ii) Hearth areas are to be expressed in square metres $\left(\mathrm{m}^{2}\right)$.
(iii) Furnace thermal efficiency, previously expressed as millions of British thermal units per long ton of solid charge will now be expressed as gigajoules per tonne (GJ/t).

$$
1 \times 10^{6} \mathrm{Btu} / \mathrm{ton}=1.038392 \mathrm{GJ} / \mathrm{t}
$$

Refining

Tankhouse-current density will be expressed as amperes per square metre $\left(\mathrm{A} / \mathrm{m}^{2}\right)$.

Particle size

(i) Express as millimetres (mm) or micrometres ($\mu \mathrm{m}$).
Note: The term 'micron' should no longer be used as a synonym for 'micrometre'.
(ii) Mesh sizes. Screens will be designated in aperture sizes in millimetres (mm) and micrometres $(\mu \mathrm{m})$.
Refer to Australian Standard 1152.

Conveyor belts

Tensile strength

Express as kilopascals (kPa), megapascals (MPa).

Belt tension

Express as newtons (N).

Ply adhesion

Express as kilonewtons per metre (kN / m).

Cover tensile strength

Express as kilopascals (kPa).

Tear strength

Express as newtons (N).

Impact

Express as joules (J).

Length

Express as metres (m).

Thickness

Express as millimetres (mm).

Width

Express as millimetres (mm).

Belt speed

Express as metres per second (m/s).

Rock mechanics

Stresses

Express as megapascals (MPa).

$$
\begin{aligned}
& 1 \mathrm{lbf} / \mathrm{in}^{2}=0.006894757 \mathrm{MPa} \\
& \text { Useful rules of thumb: } \\
& 1000 \mathrm{lbf} / \mathrm{in}^{2}=7 \mathrm{MPa} \\
& 30000 \mathrm{lbf} / \mathrm{in}^{2}=210 \mathrm{MPa} \\
& 45000 \mathrm{lbf} / \mathrm{in}^{2}=315 \mathrm{MPa}
\end{aligned}
$$

Young's Modulus

Express as megapascals (MPa)

Compressive strength

Express as megapascals (MPa)

Tensile strength

Express as megapascals (MPa)

Fuel

Specific energy

Express in megajoules per kilogram ($\mathrm{MJ} / \mathrm{kg}$).

Heating value

(i) Gaseous Fuel. Express in megajoules per cubic metre ($\mathrm{MJ} / \mathrm{m}^{3}$) at stated pressure, temperature and humidity.
(ii) Liquid Fuel. Express in megajoules per litre (MJ / L).

Relevant conversion factors

$$
\begin{array}{ll}
1 \mathrm{Btu} / \mathrm{lb} & =0.002326 \mathrm{MJ} / \mathrm{kg} \\
1 \mathrm{Btu} / \mathrm{ft}^{3} & =0.03725895 \mathrm{MJ} / \mathrm{m}^{3}
\end{array}
$$

Note: It is assumed the volumes involved are measured under the same conditions of temperature, pressure and humidity.

Winding Ropes

Rope circumference

Should not be used. Express as millimetres diameter (mm).

Rope diameter

Express as millimetres (mm).

Rope mass

Express as kilograms per 100 metres (kg/100 m). Refer to AS 1426-1973 steel wire ropes for winding and haulage purposes in mines.

Tensile strength

Express as megapascals (MPa) .
Note: that UK catalogues are still quoting as $\mathrm{kgf} / \mathrm{mm}^{2}$.
$1 \mathrm{kgf} / \mathrm{mm}^{2}=9.80665 \mathrm{MPa}$

Breaking load

Express as kilonewtons (kN) .

Explosives breaking rate

Express explosives breaking rate as tonnes per kilogram (t / kg) and powder factor as kilograms per tonne (kg/t).

Transport (haulage)

Express

Velocity as kilometres per hour (km/h).
Mass \times distance as tonne kilometre (t.km).
Fuel consumption as litres per 100 kilometres (L/100 km)
Mass per distance as tonne per kilometre (t/km).

Relevant conversion factors

```
1 mile/h = 1.609 344 km/h
1 ton.mile = 1.635 169 t.km
1 ton/mile = 0.631 342 3 t/km
```

To convert x mile/gal to y litre/100 km

$$
y=\frac{282.48094}{x}
$$

Timber

Express

Width in millimetres (mm).
Thickness in millimetres (mm).
Length in metres (m), standard lengths are in rises of 0.3 m starting at 1.8 m .
Volume in cubic metres $\left(\mathrm{m}^{3}\right)$
100 super feet $=0.2359737 \mathrm{~m}^{3}$

REPORTING RESULTS

It is desirable that a uniform approach be adopted by the mining and metallurgy industry for the reporting of results to statutory authorities and to the press.

Mass of ore, mullock and tonnes (t) concentrates
Development advance
Volumes of rock
Mass of products-such as:

blister copper, crude lead, coal or ilmenite, etc	tonnes (t)
precious metals (gold	
and silver)	grams (g) kilograms (kg)
diamonds	metric carats (CM) grams (g)
oil	tonnes (t)
umes of: natural gas oil	cubic metres $\left(\mathrm{m}^{3}\right)$ cubic metres $\left(\mathrm{m}^{3}\right)$

metres (m) cubic metres (m^{3})
tonnes (t)
grams (g)
kilograms (kg)
metric carats (CM)
grams (g)
tonnes (t)
cubic metres $\left(\mathrm{m}^{3}\right)$
cubic metres (m^{3})

The following convention is in accordance with the 9th CGPM meeting and also in accordance with the current Commonwealth Style Manual of the Australian Government.

Terms	Significance	Corresponding Decimal Factor
million	thousand \times thousand	10^{6}
billion	million \times million	10^{12}
trillion	million \times billion	10^{18}
quadrillion	million \times trillion	10^{24}

A different convention is in use in the United States of America and now also in France where:
'billion' signifies a thousand times a million $\left(10^{9}\right)$ 'trillion' signifies a million times a million (10^{12}) 'quadrillion' signifies a million times a US billion (10^{15})

In view of the existence of the different conventions, use of the terms billion, trillion and quadrillion should be avoided.

UNITS, PREFIXFS AND THEIR SYMBOLS UNITS AND PREFIXFS WITHIN SI

Name
ampere
atto (prefix 10^{-18})
candela
centi (prefix 10^{-2})*
coulomb
deci $\left(\text { prefix } 10^{-1}\right)^{*}$
deka (prefix 10^{1})*
farad
femto (prefix 10^{-15})
giga (prefix 10^{9})
gram
hecto (prefix 10^{2})*
henry
hertz
joule
kelvin
kilo (prefix 10^{3})
kilogram
lumen
lux
mega (prefix 10^{6})
metre
micro (prefix 10^{-6})
milli (prefix 10^{-3})
mole
nano (prefix 10^{-9})
newton
ohm
pascal
pico (prefix 10^{-12})
radian
second
S
siemens S
steradian st
tera (prefix 10^{12}) T
tesla T
volt V
watt W
weber Wb

* not generally used in technical applications.

OTHER UNITS WHICH MAY BE ENCOUNTERED IN THE INDUSTRY

Name	Symbol
ampere hour	A.h
centipoise	$\mathrm{cP}(\dagger)$
centistokes	$\mathrm{cSt}(\dagger)$
day	d
degree (angle)	-
degree Celsius	${ }^{\circ} \mathrm{C}$
hectare	ha
hour	h
kilogram per litre	kg/L
kilometre per hour	km/h
kilowatt hour	kW.h
knot	kn
litre \ddagger	L(*)
metric carat	$\mathrm{CM}(\dagger)$
millibar	mb
minute (angle)	,
minute (time)	min
nautical mile (international)	n mile
revolution per minute	$\mathrm{r} / \mathrm{min}$
revolution per second	r/s
second (angle)	"
tonne §	t
tonne per cubic metre	$\mathrm{t} / \mathrm{m}^{3}$
watt hour	W.h
* See note re 'litre'.	
\dagger Continued use in	ated.
\ddagger Used in conjunc millilitre, microl	fixes - eg
$\S \quad$ Used in conjunc prefixes - eg me	ve power

CONVERSION FACTORS, IMPERIAL AND INTERNATIONAL SYSTEMS

[^0]One
Cheval vapeur (C.V.) $=735.5 \mathrm{~W}$
circle
cubic centimetre
cubic metre
$=6.2832$ radians
$=0.061024$ cubic inches
$=10^{3} \mathrm{~L}$
$=61023.7$ cubic inches
$=35.3147$ cubic feet
$=1.30795$ cubic yards
$=27.4962$ bushels
$=219.969248$ Imp. gallons
cubic foot $=1728$ cubic inches $=0.028317 \mathrm{~m}^{3}$

$$
\begin{aligned}
& =6.22884 \text { gallons } \\
& =28.31685 \mathrm{~L}
\end{aligned}
$$

cubic foot/second $\quad=28.3168 \mathrm{~L} / \mathrm{s}$
cubic foot/long ton $\quad=27.87 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{kg}$
cubic foot/pound $\quad=64.43 \mathrm{~m}^{3} / \mathrm{kg}$
cubic foot/minute $=471.9474 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}$
cubic inch
cubic yard $=27$ cubic feet
$=0.764554857 \mathrm{~m}^{3}$
$=168.178$ Imp. gallons
$=1 \mathrm{~Hz}$
$=17.453293 \times 10^{-3} \mathrm{rad}$
$=0.555\left({ }^{\circ} \mathrm{F}-32\right)$
$=1.8\left({ }^{\circ} \mathrm{C}\right)+32$
$=\mathrm{C}+273.15$
$=3$ scruples
$=60$ grains
$=3.8879346 \mathrm{~g}$
$=60 \mathrm{minims}$
$=3.551633 \mathrm{~mL}$
$=0.216734$ cubic inches
$=27.34375$ grains
$=1.771845 \mathrm{~g}$
$=6$ feet
$=1.8288 \mathrm{~m}^{*}$
$=8$ fluid drachms
$=28.413062 \mathrm{~mL}$
$=1.731375$ cubic inches
$=12$ inches
$=0.3048 \mathrm{~m}^{*}$
foot head of water $\quad=2983.6992 \mathrm{~Pa}\left(\right.$ at $\left.20^{\circ} \mathrm{C}\right)$
foot $/$ minute $\quad=5.08 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{*}$
foot poundal $\quad=0.04214 \mathrm{~J}$
foot pound force $\quad=1.335818 \mathrm{~J}$

One	(Multiplier for Col. 1)
foot pound force/minute $=80.149 \mathrm{~W}$	
foot pound force/second=1.335818 W	
foot/second	$=0.3048 \mathrm{~m} / \mathrm{s}^{*}$
foot, superficial	$=2.359737 \times 10^{-3} \mathrm{~m}^{3}$
furlong	$=10$ chains
	$=201.168 \mathrm{~m}^{*}$
gallon	$=160$ fluid ounces
	$=8$ pints
	$=4$ quarts
	$=4.54609 \mathrm{~L}^{*}$
	$=1.20095$ US gallons
	$=277.42$ cubic inches
	$=0.160544$ cubic feet
	$=4.54609 \times 10^{-3} \mathrm{~m}^{3} *$
gallon (US)	$=3.785412 \mathrm{~L}$
	$=0.832675$ Imp. gallons
	$=231$ cubic inches*
	$=0.133681$ cubic feet
gallon/hour	$=1.262803 \times 10^{-3} \mathrm{~L} / \mathrm{s}$
gallon/minute	$=0.07576817 \mathrm{~L} / \mathrm{s}$
giga (G)	$=10^{9}$
gill grain	$=142.065 \mathrm{~mL}=1 / 4 \mathrm{pint}$
	$=0.041667$ pennyweight
	$=1.42857 \times 10^{-4}$ pounds
	$=0.064798918 \mathrm{~g}^{*}$
grain/cubic yard $\quad=0.08475378 \mathrm{~g} / \mathrm{m}$	
grain/gallonweight Clark Hardness) $=14.3 \mathrm{ppm} \mathrm{CaCO} 3$ by	
grain/US gallon $($ Clark Hardness $)=17.1 \mathrm{ppm} \mathrm{CaCO} 3$ by weight	
grain/normal cubic foot $=2.2883 \times 10^{6} \mu \mathrm{~g} / \mathrm{m}^{3}$ (suspended solids)	
gram	$=15.432358$ grains
	$=5$ Metric carats (CM)
	$=35.273962 \times 10^{-3}$ ounces
	$=2.204623 \times 10^{-3}$ pounds
gram/cubic centim	$=1 \mathrm{~g} / \mathrm{mL}$
	$=1 \mathrm{~kg} / \mathrm{L}$
	$=1 \mathrm{t} / \mathrm{m}^{3}$
	$=62.427961 \mathrm{lbs} / \mathrm{ft}^{3}$
	= Density
gram/cubic metre	$=11.7993$ grains/cubic yard
	$\begin{aligned} & =0.49164 \mathrm{dwt} / \text { cubic yard } \\ & =1.686 \times 10^{-3} \mathrm{lbs} / \text { cubic yard } \end{aligned}$
gram/tonne	$=1$ part per million (ppm)
	$=0.0001$ per cent
	$=0.58333 \mathrm{dwt}$ (Troy)/short ton

[^1]
One

	$=0.65333 \mathrm{dwt}($ Troy $) /$ long ton
	$=0.02917 \mathrm{oz}($ Troy $) /$ short ton
	$=0.032666 \mathrm{oz}($ Troy $) / \mathrm{long}$ ton
gravity, standard	$=0.00224 \mathrm{lbs}($ avoir)/long ton
	$=9.80665 \mathrm{~m} / \mathrm{s}^{2}$
	$=32.17405 \mathrm{ft} / \mathrm{s}^{2}$

hand $=0.1016 \mathrm{~m}=4$ inches
hectare $\quad=10000 \mathrm{~m}^{2}$
$=11959.9$ square yards
$=2.4710538$ acres
horsepower

$$
=745.69987 \mathrm{~W}
$$

$=550$ foot pounds force/second
horsepower hour $\quad=2.684519 \mathrm{MJ}$
hundredweight $=112$ pounds

$$
=50.802345 \mathrm{~kg}
$$

inch $\quad=25.4 \mathrm{~mm}^{*}$
inch head of water $\quad=248.6416 \mathrm{~Pa}$ at $20^{\circ} \mathrm{C}$
joule
$=0.737562$ foot pound force
kilo (k)
$=10^{3}$
kilogram (kg) $\quad=2.2046226$ pounds
$=32.150745 \mathrm{oz}$ Troy
kilogram force $\quad=9.80665 \mathrm{~N}$
kilogram force/square centimetre $=98.0665 \mathrm{kPa}$
kilogram force/square metre $=9.80665 \mathrm{~Pa}$
kilogram force metres per second per second $=1 \mathrm{~N}$
kilogram/cubic metre $=0.062428 \mathrm{lbs} /$ cubic foot
kilogram/litre = Density
kilogram/metre $\quad=0.67197 \mathrm{lb} / \mathrm{ft}$
kilolitre $\quad=219.969$ gallons
kilometre $\quad=0.621371$ miles
kilometre/litre $\quad=2.8248 \mathrm{~m} . \mathrm{p} . \mathrm{g}$.
kilonewton $\quad=224.809$ pounds force
kilopascal $\quad=0.145 \mathrm{lbs} / \mathrm{sq}$. inch
kilowatt $=737.562$ foot lbs force/second
$=1.34102$ horsepower
kilowatt hour $\quad=3.6 \mathrm{MJ}$
$=3412.14$ British thermal units
knot, international $=1.852 \mathrm{~km} /$ hour
link $\quad=7.92$ inches

$$
\begin{aligned}
& =0.66 \text { feet } \\
& =0.201168 \mathrm{~m}
\end{aligned}
$$

litre $=0.219969$ gallons $=0.26417$ US galls.

$$
\begin{aligned}
& =1.75975 \text { pints }=50.812839 \text { cu. ins. } \\
& =35.195 \text { fluid ounces } \\
& =0.001 \mathrm{~m}^{3}
\end{aligned}
$$

litre per $100 \mathrm{~km}=\frac{282.481}{\text { litres } / 100 \mathrm{~km}}$ m.p.g.
litre/second $=13.2$ gallons/minute

One	(Multiplier for Col. 1)
long ton (see ton, long)	
mega (M)	$=10^{6}$
metre	$=3.28084$ feet
	$=1.0936132$ yards
metre/second	$=196.85039$ feet/minute
metric carat	$=0.2 \mathrm{grams}$
metric horsepower	$=735.5 \mathrm{~W}$
micro (μ)	$=10^{-6}$
mile	$=5280$ feet
	$=1760$ yards
	$=80$ chains
	$=8$ furlongs
	$=1.609344 \mathrm{~km}^{*}$
mile/gallon	$=0.354 \mathrm{~km} / \mathrm{L}$
	$=\frac{282 \cdot 481}{\mathrm{~m} \cdot \mathrm{p} \cdot \mathrm{~g} .} \mathrm{L} / 100 \mathrm{~km}$
mile/hour	$=0.44704 \mathrm{~m} / \mathrm{s}$
milli (m)	$=10^{-3}$
millibar	$=100 \mathrm{~Pa}$
millilitre	$=0.035195$ fluid ounces
	$=0.281561$ fluid drachms
	$=16.8936$ minims
millilitre/second	$=0.792$ gallons/hour
millimetre	$=0.0394$ inches
millimetre/second	$=0.19685 \mathrm{ft} /$ minute
minute (angle)	$=0.29089 \times 10^{-3}$ radians
minim	$=0.059194 \mathrm{~mL}$
	$=3.61224 \times 10^{-3}$ cubic inches
nano (n)	$=10^{-9}$
nautical mile, Admiralty $=1.853184 \mathrm{~km}$	
nautical mile, international $=1.852 \mathrm{~km}$	
newton	$=0.2248 \mathrm{lbs}$ force
ounce (Apothecaries)	= 8 drachms
	$=1$ ounce (Troy)
ounce (Avoirdupois)	$=437.5$ grains
	$=16$ drams
	$=28.349523 \mathrm{~g}$

ounce (fluid) see fluid ounce

ounce/cubic yard	$=37.07978 \mathrm{~g} / \mathrm{m}^{3}$
ounce (Troy)	$=20$ pennyweights
	$=480$ grains
	$=31.103477 \mathrm{~g}$
ounce $(\mathrm{T}) /$ long ton	$=30.61224 \mathrm{~g} / \mathrm{t}$
ounce $(\mathrm{T}) /$ short ton	$=34.28571 \mathrm{~g} / \mathrm{t}$
part per million (ppm)	see gram $/$ tonne
pascal	$=0.020885 \mathrm{lbs}$ force $/ \mathrm{sq} . \mathrm{ft}$

[^2]One
(Multiplier for Col. 1)
peck $=9.09218 \times 10^{-3} \mathrm{~m}^{3}=2$ gallons
pennyweight (Troy) $=24$ grains

$$
=1.5551738 \mathrm{~g}
$$

pennyweight $(\mathrm{T}) / \mathrm{cu} . \mathrm{yd} .=2.034906 \mathrm{~g} / \mathrm{m}^{3}$
pennyweight $(\mathrm{T}) / 1$. ton $=1.530612 \mathrm{~g} / \mathrm{t}$
pennyweight $(\mathrm{T}) /$ sh. ton $=1.714286 \mathrm{~g} / \mathrm{t}$
perch (area) $\quad=25.29285 \mathrm{~m}^{2}$
perch (length) $\quad=5.0292 \mathrm{~m}^{*}$
pico (p) $\quad=10^{-12}$
pferdestarke (PS) $\quad=735.5 \mathrm{~W}$
pi $(\pi) \quad=3.141592654$
pint $=20$ fluid ounces
$=0.568261 \mathrm{~L}$
$=34.6674$ cubic inches
point (rainfall) $\quad=0.254 \mathrm{~mm}^{*}$
pole $\quad=5.0292 \mathrm{~m}^{*}$
pound (Avoir) $\quad=7000$ grains
= 16 ounces
$=453.59237 \mathrm{~g}^{*}$
pound $($ Troy $)=12$ ounces $($ Troy $)=5760$ grains
pound force/square inch $=6.894757 \mathrm{kPa}$
pound/cubic foot $($ Density $)=16.01846 \mathrm{~kg} / \mathrm{m}^{3}$

$$
=0.016018 \mathrm{t} / \mathrm{m}^{3}
$$

pound/cubic inch $($ Density $)=27.68 \mathrm{t} / \mathrm{m}^{3}$
pound $/$ cubic yard $($ Assay $)=593.2763 \mathrm{~g} / \mathrm{m}^{3}$
pound $/$ long ton $($ Assay $)=0.4464286 \mathrm{~kg} / \mathrm{t}$
pound $/$ minute $\quad=7.559873 \mathrm{~g} / \mathrm{s}$
pound force $\quad=4.448 \mathrm{~N}$
pound force/square foot $=47.880259 \mathrm{~Pa}$
pound $/$ short ton $($ Assay $)=398.597 \mathrm{~g} / \mathrm{t}$
quart $=40$ fluid ounces
$=2$ pints
$=1.136522 \mathrm{~L}$
quarter (mass) $\quad=12.700586 \mathrm{~kg}$
quintal $\quad=100 \mathrm{~kg}$
radian $=57.29578^{\circ}$
$\operatorname{rod} \quad=5.0292 \mathrm{~m}^{*}$
rood $\quad=1210$ square yards
$=1011.714 \mathrm{~m}^{2}$
scruple $\quad=20$ grains
$=1.296 \mathrm{~g}$
short ton see ton, short
square (of flooring) $=100 \mathrm{sq} . \mathrm{ft}$

$$
=9.29 \mathrm{~m}^{2}
$$

square centimetre $\quad=0.155000$ square inches
square foot $=144$ square inches
$=0.09290304 \mathrm{~m}^{2}$
square inch $\quad=645.16 \mathrm{~mm}^{2}$

One	(Multiplier for Col. 1)	One	(Multiplier for Col. 1)
square kilometre	$=0.386102$ square miles	ton, long	$=2240$ pounds
square metre	$=10.76391$ square feet		$=20$ hundredweights
	$=1550.003$ square inches		$=1.016047 \mathrm{t}$
square mile	$=640 \mathrm{acres}$	ton, short (US)	$=2000$ pounds
	$=2.589988 \mathrm{~km}^{2}$		$=0.907185 \mathrm{t}$
square millimetre	$=1.55 \times 10^{-8}$ square inch	ton, refrigeration	$=3.516853 \mathrm{~kW}$
square yard	$=9$ square feet	ton (long)/vertical foot	$=3.3335 \mathrm{t} / \mathrm{m}$
	$=0.8361274 \mathrm{~m}^{2 *}$	tonne (t)	$=0.9842$ long tons
	$=0.8361274 \times 10^{-4} \mathrm{ha}$		$=1.1023$ short tons
stone	$=6.3502932 \mathrm{~kg}$		$=10^{6} \mathrm{~g}=2204.62 \mathrm{lbs}$
super foot - see foor	superficial		$=1000 \mathrm{~kg}$
tera (T)	$=10^{12}$	tonne/square mile/mon	$\mathrm{h}=13.1 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{d}$
tex (mass/unit leng	(textiles) $=1 \mathrm{~g} / \mathrm{km}$	tonne/cubic metre	$=62.4238 \mathrm{lbs} /$ cubic foot
therm	$=105.506 \mathrm{MJ} *$	tonne/vertical metre	$=0.3$ long tons $/$ vertical foot
thermie	$=10^{6}$ water calories	US survey foot	$=1.0000020$ feet
	$=4.1855 \mathrm{MJ} *$		$=1200 \div 3937 \mathrm{~m}$
ton, assay	$=32.6667 \mathrm{~g}$ (in which	velocity of sound ($0^{\circ} \mathrm{C}$)	$=332 \mathrm{~m} / \mathrm{s}$
	$1 \mathrm{mg}=1$ ounce (T) per long	water Btu	$=1 \mathrm{Btu}\left(60^{\circ} \mathrm{F}\right)$
	ton		$=1054.54 \mathrm{~J}$
		watt	$\begin{aligned} & =0.73756 \text { foot lbs force/ } \\ & \text { second } \end{aligned}$
		yard	$=3$ feet
* Exact Australi	andard conversion factor.		$=0.9144 \mathrm{~m}^{*}$
From Australian	dard 1376, Conversion Factors, w		

CONVERSION FACTORS FOR FOREIGN, RARE AND OBSOLETE WEIGHTS AND MEASURES

are (metric)	$=100 \mathrm{~m}^{2}$
arpent (ancient French)	$\begin{aligned} & =(1) \text { area of about } 0.85 \text { acre } \\ & =0.34 \text { ha } \end{aligned}$
	(2) length of 192 to 192.5 ft . $=$ 58.5 to 58.7 m
bushel (English)	$=8$ gallons $=36.4 \mathrm{~L}=4$ pecks
cable (nautical)	$\begin{aligned} & =1 / 600 \mathrm{th} \text { of a degree of latitude, } \\ & \text { often taken as } 608 \mathrm{ft} \\ & =185.37 \mathrm{~m} \end{aligned}$
cape foot (Sth. Africa)	$=1.033$ Imperial ft. $=0.3149 \mathrm{~m}$
cape rood (Sth. Africa)	$\begin{aligned} = & 12 \text { cape feet }=12.4 \text { Imperial } \mathrm{ft} . \\ & 3.7879 \mathrm{~m} \end{aligned}$
chaldron (dry measure, Eng.)	$=36$ bushels
cord (of wood, obs. Eng.)	$=128 \mathrm{cu} . \mathrm{ft} .=3.6 \mathrm{~m}^{3}$
cubit (ancient Egypt)	$\begin{aligned} &=18 \text { to } 22 \text { inches }=0.457 \text { to } 0.559 \mathrm{~m} \\ &(21.8 \text { inches in the Bible) } \end{aligned}$
cup, breakfast	$=1 / 2 \mathrm{pint}=284.13 \mathrm{~mL}$
cup, metric	$=250 \mathrm{~mL}$
cup, tea	$=1 / 4 \mathrm{pint}=142.06 \mathrm{~mL}$
ell (obs. English)	$=45$ inches $=1.143 \mathrm{~m}$
firkin (obs. English)	$\begin{aligned} & =\text { wine volume, } 8 \text { to } 9 \text { gall. }= \\ & 36.4 \text { to } 40.9 \mathrm{~L} \end{aligned}$
flask of mercury	$=34.5 \mathrm{~kg}$
gross (obs.)	$=144$
hogshead (obs. English)	$=$ wine volume, $521 / 2$ gall. $=238.7 \mathrm{~L}$
hand (English)	$\begin{aligned} & =4 \text { inches (height of horses) } \\ & =0.1016 \mathrm{~m} \end{aligned}$
hundred (Sth. Aust, NT)	$=$ (land) subdivision of a county or shire, of area tens to hundreds of km ${ }^{2}$
kati (Malaysia)	$=1 \frac{1}{3} \mathrm{lb}=0.60 \mathrm{~kg}$
kilderkin (obs. English)	$=\begin{aligned} & =\text { wine volume, } 16 \text { to } 18 \text { gallons } \\ & (72.7-81.8 \mathrm{~L}) \end{aligned}$
load (obs. English)	$=1 \mathrm{cu} . \mathrm{yd}$ of alluvium
league (obs. English)	$=3$ miles $=4.83 \mathrm{~km}$
miner's inch (USA) military pace	```= rate of discharge of water, varying from 0.02 cu. ft/sec. to 0.026 cu. ft/ sec. = 0.57 to 0.74 L/sec. =2.5 feet```

morgen $($ Sth.	$=2.1165$ acres $=0.86$ ha
Africa)	
nail $($ obs. English $)$	$=21 / 4$ inches
peck $($ obs.	$=2$ gallons $=9.1 \mathrm{~L}$
English $)$	

perch (obs. $\quad=$ a length of dimension stone of
masonry meas.) 12 inch by 12 inch section; 16 $1 / 2 \mathrm{ft}$ long
picul (Malaysia) $=100$ katis $=133 \frac{1}{3} \mathrm{lbs}=60.48 \mathrm{~kg}$
pipe (obs. $\quad=$ wine volume, 105 gall. $=$
English)
prospecting dish $=$ volume of the large sized dish
(about 16 inches or 38 cm dia.)
is usually taken as 2 gallons (or
9 L), with 112 level dishes
accepted as equivalent to 1 cu .
yd (146 dishes $/ \mathrm{m}^{3}$)
puncheon (obs. $=$ wine volume, 70 gall. $=318.2 \mathrm{~L}$
English)
quintal (metric) $=100 \mathrm{~kg}$
quintal (obs. $\quad=100 \mathrm{lb}=45.36 \mathrm{~kg}$
USA)

sea mile (nautical)	$=1 / 60$ th degree of latitude
score	$=20$
Scruple (Apothecaries)	$=20$ grains
shekel (ancient Palestine) shipping ton	$=252$ grains $=16.33 \mathrm{~g}$
span (obs. Eng.)	$=40 \mathrm{cu} . \mathrm{ft}$
tablespoon	$=1 \mathrm{fl}$. oz. $=28.413 \mathrm{~mL}$
tael	$=$ Chinese weight, 1.23 Troy oz
talent (ancient	$=3000$ shekels
Palestine)	
teaspoon	$=1 / 3 \mathrm{fl}$. oz. $=9.47 \mathrm{~mL}$
tola	$=$ Indian weight, 0.375 Troy oz
vara (obs.	$=2.6816 \mathrm{ft}=0.8359 \mathrm{~m} ;$ South
Spanish)	American usage ranges from
	0.8 to 1.1 m.

verst (Russian) $\quad=3500 \mathrm{ft}=1067.07 \mathrm{~m}$

[^0]: * Exact Australian Standard conversion factor.

[^1]: * Exact Australian Standard conversion factor.

[^2]: * Exact Australian Standard conversion factor.

