

Metallurgist Training Modules **Classifier Theory and Operating Practice** Classifier Surveying and Data Analysis **Practical - Plant Data Analysis** Thursday, 17 June 2004

Matt Magee - Senior Metallurgist Isa Cu Concentrator

Metallurgist Training Modules

Classifier Theory and Operating Practice

Thursday, 17 June 2004

Overview

Classifier Theory and Operating Practice

- Classifier Objective
- Classification Properties
- Classifier Types
- Classifier Selection
- Screen Theory
- Screen Limitations
- Hydrocyclone Theory
- Hydrocyclone Operating Parameters
- Hydrocyclone Limitations
- Hydrocyclone Inspections

Classifier Objective

Classifiers perform one or more of the following:

- Separation of coarse and fine fractions (mineral sands, scats removal, grizzly)
- Separation of high and low density particles (Heavy Medium Plant)
- Splitting a broad size distribution into fractions (Coal circuits, split flotation)
- To restrict the property distribution of particles entering downstream processes (Conventional flotation)
- To control closed circuit grinding (SAG mill cyclones)

Classification Properties

Classifiers work on one (or more) of:

- Particle Size
- Particle Density
- Hydraulic Equivalence
- Particle Shape

And are limited by:

- Medium Density
- Medium Viscosity
- Hydraulic Equivalence
- Particle Shape

Classifier Types

Classifier Selection

Classifiers are selected based on:

- Safety
- Environmental
- Throughput
- Product Size (Grizzly vs Gas Centrifuge)
- Product Solids Density (Scats vs Clarifier Overflow)
- Product Density (Gold vs Quartz)
- Feed Medium (Air vs Water)
- Feed Topsize (ROM Ore vs Regrind Feed)
- Maintenance

Screen Theory

- Screens may have bars, wire, circular, square or rectangular apertures.
- Screen undersize is a very sharp cut at the aperture size, although this increases as the screen wears.
- Screen oversize can be a very sharp cut as long as the screen is not overloaded.
- Screens often vibrate either straight, circularly or elliptically to allow stratification of the bed.

Screen Theory

- Screen capacity is influenced by aperture size, feed characteristics and screen angle; low angles increase selectivity, steep angles improve throughput.
- Screens may have multiple 'decks' to split out particular size fractions.
- Screens may have multiple angles as material passes over the screen to compromise between throughput and separation efficiency.

Screen Theory

- Aperture size is usually specified as slightly larger than required cutsize to prevent pegging of near-size material.
- Aperture type:
 - Simple
 - Superior Screen Life
 - Superior Capacity
 - Superior Separation

Screen Limitations

- Very good for 'coarse' separations Screen capacity and efficiency drops off significantly for fine separations.
- Capital and maintenance cost of maintaining large screening plants may be uneconomic for fine separations.
- Efficiency can be heavily influenced by particle shape.
- Blinding can be a serious problem in some applications.

Hydrocyclone (Cyclone) Theory

- Cyclones are continuous non-mechanical, hindered settling classifiers that improve separation rate through the application of centrifugal 'force'.
- Cyclones have low maintenance requirements and high availability, can treat high throughputs, and are efficient at very fine particle separations.
- Cyclones suffer from hydraulic equivalence of particles, however this can be exploited in some applications (dense medium cyclones)

Physical Cyclone Parameters

- •Slurry fed tangentially under pressure
- •Vortex finder to reduce bypass
- •Vortex finder must be larger than spigot
- •Cone angle dictates sharpness of cut
- •Diameter dictates cutsize
- •Number of cyclones determines throughput
- •May be mounted at any angle
- •Air core rotates counter to slurry

Cyclone Mounting Angle

- Cyclones classify by opposing centrifugal and drag forces.
- Mounting a cyclone at an angle provides an extra 'G' for classification....
-but classification is not symmetrical across the cyclone.
- Although extensive trials can find an optimum between these two conditions, the large amount of engineering and testing involved often offsets the small potential gain.
- This parameter is <u>not</u> easy to manipulate in the plant.

Cyclone 'Operating' Parameters

Process Effect of Changing Operating Parameter				
	Recirculating		Cyclone	
	Cut Size	Load	Efficiency	
▲ Pressure	V			
▲ Feed Density		▼	▼	
▲ Spigot Size	V	▲ ▲ ▼ ▼		
▲Vortex Finder Size				
▲ SAG Mill Transfer Size			\checkmark	

Cyclone Operating Parameters

Cyclone Limitations

- The pressure change associated with cyclone addition/removal is often significant; cyclones are nearly always operating at a sub-optimal point.
- Density and recirculating loads limit throughput.
- Very low feed density results in the cyclone 'mass splitting' due to entrainment.
- Very high pressures result in poor cuts due to short circuiting and overloading of spigots.
- Overloading spigots ultimately results in 'Roping', a state where the air core has collapsed.
- For very fine cuts, hundreds (or thousands) of very small cyclones may be required.

Cyclone Inspections

- Cyclones should be inspected internally at least quarterly.
- Vortex finder and spigot wear rate is monitored. Acceptable wear is +10% from installation.
- Loose rubber linings cause flow disturbances and the cyclone will soon 'blow out', usually at the flange.
- 'Steps' between lining sections interfere with the flow pattern in the cyclone.
- Cracked components must be removed.
- Cyclones must ALWAYS be inspected if daily sizings are excessive, or if there is any evidence to suggest balls have passed through them.

Cyclone Inspections

Ceramic lined middle cone after balls pass through cyclone. A long time after.....

Metallurgist Training Modules

Classifier Surveying and Data Analysis

Thursday, 17 June 2004

Overview

Classifier Surveying and Data Analysis

- Screen Sampling
- Cyclone Sampling
- Cyclone Data Analysis
 - Size Distribution
 - Efficiency Curve
 - Corrected Efficiency Curve
 - Reduced Efficiency Curve

Screen Sampling

- Screens include IsaSizers, Trommels, Grizzlys, Vibratory Screens, etc.
- Difficult to accurately (and safely!) sample off large screens due to requirement to cut full stream.
- Much easier to sample at product transfer points.
- Initial data analysis similar to cyclones.

Cyclone Sampling

- Cyclone surveys require feed, overflow and underflow samples to be taken.
- Underflow and overflow samples are taken using 1/2 moon cutters, with an aperture at least 2.5 times the particle topsize.
- Underflow and overflow samples must cut the entire stream, as the cyclone classifies radially.

Cyclone Sampling

- Feed samples are usually taken at the distributor, which is well mixed.
- Feed samples must be taken last due to the resulting drop in distributor pressure.
- Cyclones should operate steadily for 20 30 minutes prior to and between sampling campaigns.

Cyclone Sampling

- Solids density and particle size must be considered when estimating required sample volume.
- Samples must contain enough solid to be representative of the size distribution (Gy's Formula).
- Samples must also contain at least 300g solid if screen sizing is required.
- Unless assaying of size fractions is required, laser sizing is usually adequate for very fine distributions.
- Samples of excessive size slow down lab processing.

Cyclone Data Analysis

- Size distributions are the basis of all analysis.
- Distributions are plotted with respect to nominal particle size, not screen size.
- Cyclosizer/Laser Sizer fractions must be assigned a passing and nominal size based on material density.

Isa Copper Ore SG 2.9 - 3.1			
	Passing	Nominal	
Cyclosizer	Size	Size	
C1	29.5	33.5	
C2	18.8	23.5	
C3	13.2	15.8	
C4	9.3	11.1	
C5	5.8	7.3	
C6	3.9	4.8	
C7	-39	20	

Size Distribution

Particle Size (microns)

Efficiency Curve

- Efficiency Curves allow quantitative evaluation of cyclone performance.
- Key features of efficiency curves allow interpretation of performance and provide explanations for deviations from targets.
- Cyclone efficiency curves in minerals processing applications should be plotted as recovery to overflow, which is the true product.
- Cutpoint (d50) is the size at which there is 50% chance of reporting to either U/F or O/F
- Work with recalculated feed to minimise discrepancy

Efficiency Curve - Uncorrected

OH1604 (Regrind Cyclopak) - Corrected and Uncorrected Cyclone Efficiency Curve (6/02/2004) - Cavex

Caused by entrainment increasing non-linearly with decreasing particle size

Entrainment/Bypass

Caused by unclassified material following water or failed vortex finder. Is theoretically equal to water split.

Sizing Discrepancy

Caused by transition from screen sizing (shape) to cyclosizing (hydraulic equivalence)

Efficiency Curve - Corrected

- Uncorrected efficiency curves are useful for comparing conditions taken at short time intervals (hours), or several different cyclones/components taken during the same survey.
- They are not easy to compare if tests are done several days apart due to slightly different operating conditions, ore type, temperature, etc.
- Cyclone Efficiency numbers are often meaningless if bypass is significant.
- To compare curves for this purpose, it is necessary to correct the curve for bypass.

Efficiency Curve - Corrected

OH1604 (Regrind Cyclopak) - Corrected and Uncorrected Cyclone Efficiency Curve (6/02/2004) - Cavex

Reduced Efficiency Curve

- Corrected efficiency curves still suffer from variation based on random fluctuations in operating conditions.
- To eliminate the effect of such conditions (such as cyclone feed distribution), it is necessary to reduce the efficiency curve to fundamentals.
- Reduced efficiency curves therefore provide consistent information on cyclone classification efficiency, and are used to gather data for circuit modelling.
- JKSimMet and other modelling programs require parameters acquired from reduced efficiency analyses.
- Reduced curves only show classification efficiency. They <u>do not</u> give any data on cutpoint.

Efficiency Curve - Reduced

OH1604 (Regrind Cyclopak) - Reduced Cyclone Efficiency Curve (6/02/2004) - Cavex

Metallurgist Training Modules

Practical - Plant Data Analysis

Thursday, 17 June 2004

Overview

- Using plant data:
 - Plot cyclone distribution data
 - Plot & Analyse Efficiency Curve
 - Plot & Analyse Corrected Efficiency Curve
 - Plot & Analyse Reduced Efficiency Curve
- Evaluate Cyclone Performance
- Presentation of Standard Template

Solid Split

But for classifier surveys, assay data is usually unavailable, and each size fraction will produce a (slightly) different solid split. % Solids is the most robust way to calculate solid split.

But % solids is not in assay form and must be converted!

Dilution Ratio

Dilution Ratio

Solid Split - Size Distribution

To calculate overall solid split to overflow from size fractions, we must minimise the errors associated with the solid split for each size fraction.

Solid Split =
$$\frac{\sum_{i} (o_i - u_i)(f_i - u_i)}{\sum_{i} (u_i - o_i)^2}$$

<u>Best estimate</u> based on all size fractions. Should be close to solid split based on dilution ratio if data integrity is good.

Feed Recalculation

- Feed must be recalculated to maintain data consistency.
- Recalculated feed must be similar to sampled feed, otherwise data is invalid.
- Feed is recalculated from Solid Split.
- Choose a solid split value associated with a large separation. May be size fractions, mass flows, dilution ratio, assays, etc. $f_{r} = (u_{a} * (1 - SS_{o})) + (o_{a} * SS_{o})$

 f_{r_i} = recalculated feed mass % i

- u_{a_i} = actual underflow mass % i
- $SS_o = Solid Split to Overflow$

Develop Size Distribution Chart

- Develop % Passing and Cumulative % Passing Data.
- Plot overflow, underflow, feed and recalculated feed CPP against log10 nominal particle size.
- Nominal particle size is geometric mean of upper and lower screen (or cyclosizer etc.) sizes for the fraction.

Develop Efficiency Curve

- Plot recovery to overflow against nominal particle size
- Calculate recovery for each size fraction use recalculated feed to minimise error.

$$% \operatorname{Rec}_{i} = \frac{c_{i} * (f_{i} - t_{i})}{f_{i} * (c_{i} - t_{i})}$$

f, c, t = Mass% of size i

- Note key elements of the curve.
- Calculate <u>cyclone efficiency</u>

$$\alpha_e = \frac{d75 - d25}{2*d50}$$

 α used for convenience here. Do not try and directly use this α in modelling functions.

Develop Corrected Efficiency Curve

- Calculate the Water Split to Overflow
 - calculate 'dilution ratio' with %water instead of %solid
 - calculate `water split' = (f-t)/(c-t)
 - f,c,t=water dilution ratio=100-%H2O/%H2O
- Corrected recovery (efficiency) to overflow Eoc: $E_{oc_i} = \frac{E_{o_i}}{WS_o}$ $E_{oc_i} = \text{Corrected Rec of i to Overflow}$ $E_{o_i} = \text{Actual Rec of i to Overflow}$
 - $WS_o = Water Split to Overflow$

Develop Corrected Efficiency Curve

- Note components of corrected curve.
- Calculate *separation efficiency*

 $\frac{d75 - d25}{2*d50}$ α_c =

 α used for convenience here. Do not try and directly use this α in modelling functions.

Perfect separation when $\alpha = 0$

Develop Reduced Efficiency Curve

- Calculate d50c (= P50 of corrected curve)
- Plot Eoc vs d/d50c
- Note key components of curve.
- Calculate *reduced efficiency*
- Compare the three efficiency values

$$\alpha_r = \frac{d75 - d25}{2*d50}$$

 α used for convenience here. Do not try and directly use this α in modelling functions.

Cyclone Performance Evaluation

- How is this cyclone performing? Why?
- What could be done to improve performance?

Standard Template

- A standard cyclone data analysis template has been developed.
- The standard template should be used for cyclone data analysis and presentation at Mount Isa Mines.
- The standard template:
 - Allows improved retention of corporate knowledge;
 - Allows other metallurgists to see and understand data and data location quickly;
 - Allows rapid and consistent analysis of classifier data;
 - Is correct!!

End

References:

1. Kelly, E., Spottiswood, D. (1995) *Introduction to Minerals Processing*, Australian Mineral Foundation, Perth

2. Kojovic, T. et. al. (1996) *Mineral Comminution Circuits: Their Operation and Optimisation*, JKMRC, Brisbane

3. Wills, B (1997) *Minerals Processing Technology*, Butterworth-Heinemann, Oxford

4. Metso Minerals (2004?) <u>Basics In Minerals Processing</u>, Metso Thursday, 17 June 2004