Procedure for drawing a nomagram to show the relationship between three variables.

To draw an N or Z chart, the relationship between the three variables (x, y and z) needs to be in the form

$$
\begin{array}{r}
f(z)=f(x) \\
f(y)
\end{array}
$$

The function by itself (ie $f(z)$) will form the diagonal. The zero values for functions x and y will lie at opposite ends of the diagonal so that the values for x will.increase from left to right and the values for y will increase from right to left as shown in Figure 1.

(Alternatively, the diagram could be a mirror image of Figure 1 and this would still be quite valid. Fig 2) 0
$f(y)$
 0

The values for $f(z)$ will be measured from the zero point of which ever function forms the numerator in the equation ie $f(x)$ in this case. The zero points do not need to be shown on the graph.

The scales for $f(x)$ and $f(y)$ can be any convenient scale and the length of the diagonal can be any convenient length. The distance between the scales can be any convenient distance.

Procedure

1 Select the range of values for x to be covered eg say x varies from 20 to 60 .
2 Calculate the values for $f(x)$ for $x=20,21, \ldots$ 60

3 Select the range of values for y to be covered eg say y varies from 10 to 20.
4 Calculate $f(y)$ for $y=10,11, \quad .20$.
5 Plot $f(x)$ and $f(y)$ values on parallel lines to give a conveniently sized diagram (Fig 3). (Don't plot just the x and y values unless $f(x)$ and x are the same thing or $f(y)$ and y are the same thing.;

Figure 3

6 The positions for z can be calculated mathematically but it is simpler to find the position on the line for a particular value of z by knowing the values of x and y to give the required z.

For example, if $\mathrm{x}=32$ and the position for $\mathrm{z}=20$ needs to be determined, calculate the value for y .
Say that the value calculated for y is 12.5. Next, place a ruler to join the points $f(x=32)$ and $f(y=12.5)$ to determine the intercept on the z axis.

7 Use this procedure for all the values of z required.
8 Calculate some other values for $f(y)$ for different values of x to give desired values of z as a cross check.

9 Mark the positions of x and y (not $f(x)$ and $f(y)$) on the horizontal scales.
10 Mark the positions of z on the diagonal scale.
(see example under pulp densily calculations)

