

CSA Global Mining Industry Consultants an ERM Group company

The Role of
Geochemistry in
Gineral SystemsBY:Carl Brauhart
Principal Consultant

Setting out to be Creative

"If you want to end up somewhere different, you need to start somewhere different"

Brian Eno Music Producer

Take-Home Messages

In Mineral Exploration there are THREE main things that whole-rock geochemistry can help us with

- 1. Lithology (Mostly Immobile Element Geochemistry)
- 2. Alteration (All About Mineralogy)
- 3. Metal Signatures (Direct Detection of Mineralisation With Multielement Geochemistry)

Mineral Systems = Context

CSA Global Mining Industry Consultants an ERM Group company

Immobile Element Geochemistry

Immobile Element <u>RATIOS</u> Define Rock Types

- Immobile elements neither enter, nor leave a rock mass during alteration or weathering
- Concentrations may change, ratios remain constant
- Key elements include Th, Nb, REE, Zr, Ti and Sc

Immobile Elements

2

3

5

6

CSA

He

Ne

Ar

Kr

Xe

Rn

Og

F

CI

Br

At

Ts

Immobile-Incompatible Element Classification

Incompatible element pairs maintain very similar ratios across a wide range of compositions

That makes them very useful for discriminating different <u>magma</u> <u>series</u>

Lithogeochem Calculator

Lithogeochem **Calculator** compares 13 element ratios to quantify difference between profiles for two samples Compatible elements: are avoided because they vary according to

CSA

Discriminating Magma Series

Use incompatible element ratios to discriminate between magma series Use compatible elements to discriminate within a magma series

CSA

Lithogeochem Calculator

Panorama VHMS District

440 rock chip samples classified using Lithogeochem Calculator

Spatially coherent domains result

Panorama VHMS: Rapidly Classify Bi-plots

Panorama VHMS: Upper and Lower Volcanic Suites

- Lower Suite
- Upper Suite
- Under Sulphur Springs
- Calc-alkaline Rhyodacite
- Granophyre-Rhyolite
- 😑 Outer Phase Granite
- Microgranite
- 😑 Inner Phase Granite
- Late Dolerite

Panorama VHMS: Upper and Lower Volcanic Suites

- Lower Suite
- Upper Suite
- Under Sulphur Springs
- Calc-alkaline Rhyodacite
- Granophyre-Rhyolite
- 😑 Outer Phase Granite
- Microgranite
- 😑 Inner Phase Granite
- Late Dolerite

Th Nb Ta La Ce Pr Nd Zr $\,$ P $\,$ Sm Eu Ti Gd Tb Dy $\,$ Y Ho Er Yb Lu V $\,$ Sc $\,$

Previously Unrecognised Suite

- Lower Suite
- Upper Suite
- Under Sulphur Springs
- Calc-alkaline Rhyodacite
- Granophyre-Rhyolite
- 😑 Outer Phase Granite
- Microgranite
- 😑 Inner Phase Granite
- Late Dolerite

Volcanic and granite

Third suite has subtly higher Th/Yb & La/Yb

Panorama VHMS: Outer and Inner Phase Granite

- Lower Suite
- Upper Suite
- Under Sulphur Springs
- 😑 Calc-alkaline Rhyodacite
- Granophyre-Rhyolite
- 😑 Outer Phase Granite
- Microgranite
- Inner Phase Granite
- Late Dolerite

Panorama VHMS: Rapidly Classify Bi-plots

How Has This Helped?

- 🔵 Lower Suite
- Upper Suite
- Under Sulphur Springs
- Calc-alkaline Rhyodacite
- Granophyre-Rhyolite
- 😑 Outer Phase Granite
- Microgranite
- 🛑 Inner Phase Granite
- Late Dolerite

- Ti-Zr has been used to validate mapping of compositions basalt through to rhyolite
- Detailed immobile element geochemistry defines a break in volcanic stratigraphy – VHMS implications
- Four major magma series helps unravel the order of events in the mineral system

CSA Global Mining Industry Consultants

2. Alteration Geochemistry

Alteration Diagrams

On any diagram, ask "What minerals are likely to be driving trends on my diagram?". <u>It's all about minerals</u>

Alteration Elements

CSA

Panorama VHMS Mineral System

CSA

Panorama VHMS Mineral System

Panorama VHMS Mineral System: Mass Transfer Maps

CSA

How Has This Helped?

- Na/Al versus K/Al molar ratio plot confirms alteration mapping
- Architecture of alteration map can be interpreted as a convective hydrothermal system: discharge zones are targets
- Albite alteration coincides with zone of strong metal leaching = high temperature reaction zone

Choose Diagrams Appropriate to Your Mineral System

CSA

. . . .

CSA Global Mining Industry Consultants

3. Mineralisation Signatures

Principal Component Analysis

- PCA is very useful to identify multielement associations: Mineralisation
- Rather than 40, or 60 individual elements, a handful of ranked scaled eigenvectors
- The proportion of variation owing to each element association (process) is defined <u>Single element maps mix all these processes together</u>

PCA Step 1: What to Include?

CSA

PCA Step 2: Centred Log Ratio Transform

Let's leave that for now

 $\bullet \quad \bullet \quad \bullet \quad \bullet$

PCA Step 3: Calculate PCA

- Eigenvector: How much X plus how much Y, plus (What direction?)
- 2. Eigenvalue: What proportion of overall variation (How long?)
- 3. Scaled Eigenvector: Scaled by eigenvalue. Most useful output of all. Sum of squares for each variable sums to 1.
- 4. PC Score: Principal component score for individual samples

PCA Step 4: Interpret Ranked Scaled Eigenvectors

. . . .

Two Orogenic Gold Signatures

Examples of Gold 1 and Gold 2 ore element signatures on OSNACA Enrichment Diagrams

Note: Co, Re, Pd, Pt, In, Tl, U assays not provided

We have rapidly assessed data for 80-odd RC samples from an orogenic gold project and have the following leads to follow up:

- Mafic, felsic and sedimentary host rock signatures have been defined
- Two different styles of gold mineralisation have been identified, one "oxidised", the other "reduced". Should we target where these two systems meet?
- White mica alteration may also have been defined and requires follow-up

Scavenging

1	1 1A 1 Hydrogen 1.01	2 2A					k	(ey					13 3A	14 4A	15 5A	16 6A	17 7A	18 8A 2 He Helium 4.00
2	3 Li Lithium 6.94	4 Be Beryllium 9.01		11 Atomic number Na Element symbol Sodium Element name						5 B Boron 10.81	6 C Carbon 12.01	7 N Nitrogen 14.01	8 O Oxygen 16.00	9 F Fluorine 19.00	10 Ne Neon 20.18			
3	11 Na Sodium 22.99	12 Mg Magnesium 24.31	3 3B	4 4B	5 5B	6 6B	2 Ave 7 7B	erage aton 8	nic mass* 9 —8B—	10	11 1B	12 2B	13 Al Aluminum 26.98	14 Si Silicon 28.09	15 P Phosphorus 30,97	16 S Sulfur 32.07	17 Cl Chlorine 35.45	18 Ar Argon 39.95
4	19 K Potassium 39.10	20 Ca Calcium 40.08	21 Sc Scandium 44.96	22 Ti Titanium 47.87	23 V Vanadium 50.94	24 Cr Chromium 52.00	25 Mn Manganes 54.94	26 Fe Iron 55.85	27 Co Cobalt 58.93	28 Ni Nickel 58.69	29 Cu Copper 63.55	30 Zn ^{Zinc} 65.39	31 Ga Gallium 69.72	32 Ge Germanium 72.61	33 As Arsenic 74.92	34 Se Selenium 78.96	35 Br Bromine 79.90	36 Kr Krypton 83.80
5	37 Rb Rubidium 85.47	38 Sr Strontium 87.62	39 Y Yttrium 88.91	40 Zr Zirconium 91.22	41 Nb Niobium 92.91	42 Mo Molybdenum 95.94	43 Tc Technetium (98)	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.91	46 Pd Palladium 106.42	47 Ag Silver 107.87	48 Cd Cadmium 112.41	49 In Indium 114,92	50 Sn ^{Tin} 118.71	51 Sb Antimony 121.76	52 Te Tellurium 127.60	53 lodine 126.90	54 Xe Xenon 131.29
6	55 Cs Cesium 132.91	56 Ba Barium 137,33	57 La Lanthanum 138.91	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 186.21	76 OS Osmium 190.23	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au _{Gold} 196.97	80 Hg Mercury 200.59	81 TI Thallium 204.38	82 Pb Lead 207.2	83 Bi Bismuth 208.98	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
7	87 Fr Francium (223)	88 Ra Radium (226)	89 Ac Actinium (227)	104 Rf Rutherfordium (261)	105 Db Dubnium (262)	106 Sg Seaborgium (266)	107 Bh Bohrium (264)	108 Hs Hassium (269)	109 Mt Meitnerium (268)									
* If this number is in parentheses, then it refers to the atomic mass of the most stable isotope. 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lu * If this number is in parentheses, then it refers to the atomic mass of the most stable isotope. 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Thorium 232.04 231.04 238.03 (237) (244) (243) (247) (247) (251) (252) (257) (258) (259) (262)																		

CSA

Scale Dependence

Exploration geologists want to isolate metal associations related to mineralisation from everything else. They vary according to scale.

- If detectable in a regional dataset, a mineralisation signal will feature on a lower order PC (e.g., PC5)
- A single point (or maybe a few) will not define a metal association in PCA at all.
 You must ALSO look carefully at probability plots.
- However, within a deposit, a metal signature will feature on PC1

Additive Indices

CSA

Do <u>NOT</u> use raw values: See also Weighted Sum function in ioGAS • •

The use of multielement geochemistry to define mineralisation signatures isolates mineralisation from competing processes like regolith and lithology

You should always follow up a Au anomaly with pathfinder support ahead of a Au-only anomaly

The use of multielement geochemistry helps to eliminate false positive and provides more confidence to follow up subtle anomalies that are related to mineralisation

Target ranking is greatly improved

In Mineral Exploration there are THREE main things that whole-rock geochemistry can help us with

- 1. Lithology
- 2. Alteration
- 3. Metal Signatures
- 1. is for a more accurate stratigraphic framework \rightarrow better structure
- 2. is for mapping hydrothermal fluid flow \rightarrow better predicts deposit sites

3. is for more reliably identifying mineralisation, and having found it, understanding the range of signatures present

CSA Global Mining Industry Consultants an ERM Group company

Integrating Structural Geology to Understand Mineral Systems

BY: Rob Holm Consultant Geologist

20 August 2019

Mineral Systems

Peters et al., 2017; Knox-Robinson and Wyborn, 1997

Components of Mineral Systems

Ford et al., 2019; Knox-Robinson and Wyborn, 1997

Lithospheric-Scale Structure and Fluid Migration

Hronsky and Kreuzer, 2019; Grauch et al., 2003

Hronsky and Kreuzer, 2019; McCuaig and Hronsky, 2014

Blewett et al., 2010; Goleby et al., 2003

Terrane to Local-Scale Fluid Migration and Trapping

Local to Deposit-Scale Fluid Migration and Trapping

Deposit-Scale Events and Traps?

Blewett et al., 2010

				_		
H1000	Hole_id	Depth From	Structure	SPATIAL	Alpha	Beta
D	ULDD019	105.3	BD	0	60	15
D	ULDD019	105.6	BD	0	55	20
D	ULDD019	105.7	BD	0	50	0
D	ULDD019	125.7	FO	0	35	350
D	ULDD019	133.6	FO	0	40	211
D	ULDD019	130.3	FO	0	50	355
D	ULDD019	133.1	VN	0	25	202
D	ULDD019	138.7	VN	0	35	170
D	ULDD019	149.1	FZ	0	55	5
D	ULDD019	149.5	FZ	0	60	35
D	ULDD019	149.7	FZ	0	55	15
D	ULDD019	162	FO	0	47	242
D	ULDD019	162.1	VN	0	70	174
D	ULDD019	163.9	VN	0	65	85
D	ULDD019	164.2	VN	0	50	127
D	ULDD019	163.4	FO	0	60	315
D	ULDD019	165.9	FX	0	35	310
D	ULDD019	164.8	VN	0	45	118
D	ULDD019	166.2	FO	0	15	137
D	ULDD019	166.2	JS	0	60	100
D	ULDD019	166.8	JS	0	50	225
D	ULDD019	169.4	FO	0	40	355
D	ULDD019	170	FZ	0	50	90

We cant rely on orientation alone to distinguish important structures and orientations.

We need more than this from our data collection.

Deposit-Scale Structural Observations

Jones et al., 2019

Deposit-Scale Structural Observations

- Focus on observations rather than interpretation.
- What are the key characteristics of structures we can use to classify and interpret them.
- Make observations "Queryable".
- Get observations out of the comments field and into the data fields.
- Recording of cross-cutting relationships are key to interpret timing.

Quality Control of Structural Observations

In all stages of core orientation, mark up and measurement, accuracy is key. Record the confidence associated with different workflows.

The accumulation of small errors over multiple stages can result in significant errors that can affect the quality of results.

Non filtered bedding data Apparent folding (which is not real!)

Is a Vein Just a Vein?

Veins need to be separated for structural analysis by their characteristics, as well as their orientation and mineralogy.

For example, the vein characteristic could describe:

- What does the vein look like internally?
- What is the shape of the vein?
- How does the vein relate to other similar veins?

Vein abundance is important, but you don't have to measure every vein. Quantify similar veins by recording frequency.

Is a Vein Just a Vein?

CSA

What About Other Structures? Faults, Folds, etc, etc

Breccias

Angular

Sub-angular

Sub-rounded

Rounded

CSA

Slaty Cleavage

Crenulation Cleavage

Gneissic Banding

Foliation

Structural Intersections

Lineations

Fold Axis

Migration Pathways, Traps and Mineralisation

What is different about sites that host mineralisation compared to everything else around it?

Like any other data set (e.g. lithology, geochemistry, geophysics), we are looking for a structural anomaly that may help to predict sites of mineralisation.

<u>Spatial domaining</u> – domain by fault block, lithology, northing, easting etc. to recognise differences in statistical relationships between structures.

Migration Pathways, Traps and Mineralisation

Working Towards a Mineral System Understanding

Once you have a dataset interpretations can be undertaken for mineral systems understanding:

Fold architecture Fault architecture	 Folds Plunge and plunge direction 	e Lode related						
Sation Faulting/shearing Fault Bends Fault stepovers Structural intersect	 Position around for (vergence) Style of folding tions 	olds						
sation on/ Folding Faulting/shearing	 Faults and shearing Sense of moveme Characteristics to recognise sets 	ent						
	Sation areFold architecture Fault architectureSation bcussingFaulting/shearing Fault Bends Fault stepovers Structural intersectSation bn/ mentFolding Faulting/shearing Faulting/shearing	 Fold architecture Fault architecture Folds Plunge and plunge direction Position around for (vergence) Structural intersections Folding Faulting/shearing Sense of moveme Characteristics to recognise sets 						

Overprinting veins

Example

Vein populations

Structural Geology in Mineral Systems

Peters et al., 2017; Knox-Robinson and Wyborn, 1997

CSA Global Mining Industry Consultants an ERM Group company

Principles of Structural Data Collection and Controls

Ask me about our CSA Global Short Course

