Towards Understanding the Lead Blast Furnace – Contents

	Overview	1
1.	Introduction	7
2.	Carbothermic Reduction of Metal Oxides	8
3.	Lead Blast Furnace Smelting	11
4.	Port Pirie Developments	13
5.	The Lumsden Concept of Lead Blast Furnace Chemistry	16
6.	Reconciling Lumsden's Hypotheses with Practice	20
	Slagging zone equilibrium	22
	An influence of kinetics?	27
	Reduction in the furnace shaft	32
	Top reaction zone	35
7.	The Problem of Bridging in the Lead Blast Furnace	39
8.	The Kinetics of Reduction of Lead Sinters	46
	Sinter mineralogy and reduction kinetics	55
	The zonal reduction profile of the lead blast furnace	62
9.	Sulfur Deportment in the Lead Blast Furnace	64
	Thermochemistry of sulfur deportment in the hearth zone	65
	Sinter plant practice and the control of the sulfur content of sinter	70
	Eliminating sulfur from the blast furnace as $\mathrm{SO}_{_2}$	74
10.	Implications for Process Modelling	79
	Blast rate and productivity prediction	81
	Defining reaction outcomes in the furnace shaft	83
	Melting rate control	85
	Chemical reaction rate control	86

	Changing phase compositions and reduction kinetics	89
	The interfacial surface, S	90
	Gas phase composition, CO concentration and liquid-phase component activity	90
	Factors affecting the temperature gradient	90
	Modelling of liquid-phase reduction – summary and conclusions	92
11.	On Phase Separation in Lead/Slag Systems	95
	Sedimentation	96
	Density	97
	Droplet size	97
	Viscosity	98
	Interfacial tension and coalescence	99
	System factors	100
	Phase separation of two liquids in the presence of a solid phase	104
	Expanded settling capacity?	105
12.	References	107