Conference Proceedings
Sixth International Conference on Acid Rock Drainage (ICARD)
Conference Proceedings
Sixth International Conference on Acid Rock Drainage (ICARD)
An Experimental Study of the Chemistry of Iron Precipitation Within Anoxic Limestone Drains
Anoxic limestone drains (ALDs) have been widely used in the passive treatment of acid mine drainage (AMD), but their effectiveness has often been less than anticipated. Iron hydroxide often precipitates around limestone particles and inhibits neutralisation. To determine the conditions under which iron hydroxide precipitates, a small-scale laboratory ALD system was built to enable a detailed examination of the chemistry of iron within the drain. For one experiment, a mixture of limestone and quartz was introduced to the drain to assist in the determination of the key mechanism governing iron precipitation. Synthetic anaerobic acid mine drainage containing Fe2+ (~130 ppm), SO4 2- and H+ was pumped at a rate of 30 mL/min up a 90 cm tall, 15 cm diameter vertical column filled with limestone gravel of 98 per cent purity. Three sampling ports were fitted at equal intervals along the column; water was periodically extracted for analysis at the sampling ports over an 11-hour period. Experiments were run at influent pH levels of 2 and 4. Results show that acid neutralisation to pH greater than 6 occurred at the inflow end of the drain. The greatest amount of iron precipitation (19.5 per cent) also occurred in this area. The lack of iron precipitation on the quartz surfaces in the quartz/limestone mixture indicates that neutralisation is the key mechanism for the precipitation of iron hydroxide on limestone particles. A pe-pH stability diagram derived for the laboratory ALD system indicates that ALDs will not be effective for AMD with pH <1.5. at these phs, the lower water stability limit prevents the pe from being sufficiently reduced to prevent iron precipitation upon neutralisation. to avoid iron precipitation altogether within an ald, influent amd must have a ph>2. Influent waters with pH 2 require a pe of -2 (Eh: -118.4 mV) to avoid Fe precipitation upon neutralisation. Influent waters of pH 4 require a pe between -2 and -4.1.5.>
Contributor(s):
S Santomartino, J Webb
-
An Experimental Study of the Chemistry of Iron Precipitation Within Anoxic Limestone DrainsPDFThis product is exclusive to Digital library subscription
-
An Experimental Study of the Chemistry of Iron Precipitation Within Anoxic Limestone DrainsPDFNormal price $22.00Member price from $0.00
Fees above are GST inclusive
PD Hours
Approved activity
- Published: 2002
- PDF Size: 0.286 Mb.
- Unique ID: P200303159